
AD-A265 866
R L-TR-93-28 tI.IIII.It I I IIV I1I
In-House Report
February 1993

INITIAL DEFINITION OF A KNOWLEDGE-
BASED SOFTWARE QUALITY ASSISTANT

Joseph A. Carozzoni DTIC
SELE CTE7

JUN 16 1993ED
APPROVED FOR PUBLIC R&EASE, DISTRIBUTION UNLIMITED.

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

93-133989 3 6!,• ! .I' •.. 11t1 11!111 t iii!i1 1i1

This report has been reviewed by the Rome Laboratory Public Affairs

Office (PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

RL-TR-93-28 has been reviewed and is approved for publication.

APPROVED:

SAMUEL A. DINITTO, JR., Chief
Software Technology Division

Command, Control & Communications Directorate

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL Ut3CA) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Npp4ov 8
iP.bc tePtr~gbU8 frigd Vtc Co~aw- of rtcwnr~rns esunateato aerage o pwx fespore rc*igta" trnt t r ev*T rC r.W , nAO1 w'aw*.V~~.U
,gtrtefrg w-4 m-wtarv "- cas r~ececta w car-.i-gv~t " evem.yi ovcobco, of rloarru S"- ctwrrnwv f~o g wtk mtmr~sai e-%r~zge u) a ., t .':

COLrdact c rforr"~~Icn..k~ ett a redrwa~t Us b~dw to of~r i~x~~Sv es. uste tar r~o'an3o ttio(nXs W~

:)r~s HgwW SLe1DA mV 20-M w~jto OtufiC4 of M~W~gWTV "OLKX.1g PapWO Ped=ý 1;o fC704CIW, tV q'x- -

1.AGENCY USE ONLY (Leave Blank) 12. REPORT DATE 3 REPORT TYPE AND DATES COC'

Feb)ruary 19919 inuv

4. TITLE AND SUBTITLE !5 FUNDING NUMBERS

INITIAL DEFINITION OF A KNOdLYEDGE-BASED SUFIWAE'. - 2
QILAITY ASSISTANT -

6. AUTHOR(S) Is -
6..

Josepih Carozzoni.

. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8" PERFORMING ORGANIZAI IC'N

Rome Laboratory (C3CA) i

525 Brooks Road RL1.-lR-9 3-2s
Griffiss AFB NY 13441-4505

9. SPONSORING/MONITORING AGENCY NAME($) AND ADDRESS(ES) i10. SPONSORINGMONII ORINC

Rome Laboratory (C3CA) AGENCY REPORT NUMM3 :

525 Brooks Road
Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Joseph Carozzoni/C3CA (315) 330-%3"64

12a. DISTRIBUTION/AVAILABILITY STATEMENT 121). DISTTIIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT(M- 2 a0dsý4

Prior and current research in the area of software quality reveals the necessity for a

more innovative approach. This project suggests the need for further exp1oratorv work

in the application of knowledge-based and expert system technology to areas rclated to

software quality. Prior investigation have focused on the development of an expert '-v'-

tern to support the specification and generation of software quality factor goals T This

project contemplates the creation and development of a comprehensive Knowlcdge-based

Software Qu•i ity Assistant (KBQA), which would eventually encompass the entire software

development life cycle.

14. SUBJECT TERMS 18 NUMSEP OF PAGE.S

Software Quality, Knowledge-Based 1.0)8,-
16 PP.2 E CODE

1. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 120 LIMITATION OF A0S IRAC I
OF REPORT OF THIS PAGE OF ABSWTACT

IN(LASS [IFlElD 1NCLASSIFI.E 1NC1.ASS I F lED /1

-,es- ,d ., A - . ,

TABLE OF CONTENTS

LisT OF FIGURES 5

ABSTRACT 6

CHAPTER 0 - NEw TERMINOLOGY 7

,A-ce-ion For

CHAPTER 1 - INTRODUCTION NTIS CRA&I 9DTIC TAB
1.1 Why Do We Need Software Quality? Unannotlced .

1.2 Historical Perspective J'.t ficaoi Uri.
1.3 Zeroing in on Reliability

By
Dist, ibition I

CHAPTER 2 - PROBLEM DESCRIPTION Availability Codes 16

2.1 Introduction I Avail andior

2.2 Present Practice Dist Special

2.3 A Better Way L i
2.4 Project Scope

CHAPTER 3 - RELIABILITY AND THE LIFE CYCLE 23

3.1 Introduction

3.2 DOD-STD-2167(A)
3.3 Generic Life Cycle

3.4 The Reliability Component concept
3.5 Reliability: Phase by Phase .- ,

CHiiAPTER 4 - RELIAIiITY MEASUREMENT 33

4. 1 Introduction
4.2 Reliability Measurement: A Function of Testing

4.3 Software Reliability Model Classification

Page 1/2

4.4 Expert System Based Model Selection

4.5 An Example

4.6 Knowledge Base Scope

4.7 Summary

CHAPTER 5 - RELIABILITY EsTIMATION 47

5.1 Introduction

5.2 When to Estimate

5.3 Module to Module Differences

5.4 System Configuration

5.5 Is Accurate Estimation Possible?

5.6 KBQA Estimation Inventory

5.7 Summary

CHAPTER 6 - RELIABILITY PREDICTION 54

6.1 Introduction

6.2 Why Predict?

6.3 What to Predict?

6.3.1 Reliability Models

6.3.2 Development Process

6.3.3 Software Characteristics

6.3.4 Historical Factors

6.4 Example
6.5 Static Analysis

6.6 Summary

CHAPTER 7 - KNOWLEDGE BASE ARCHITECTURE 61

7.1 Introduction

7.2 System Architecture

7.3 Knowledge Base Architecture

7.3.1 Architecture 1: Life Cycle Based

7.3.2 Architecture 2: Components of Reliability Based

7.3.3 Architecture 3: Development Tasks Based

7.4 Advantages and Disadvantages

Page 3

7.5 Knowledge Representation

CHAPTER 8 - AUTOMATIC TP GENERATION. 81
8.1 Introduction
8.2 Reliability Models
8.3 Musa Example
8.4 Unit Testing

CHAPTER 9 - MONITORING AND TRACEABILITY 90
9. 1 Introduction
9.2 Software Quality Schematic
9.3 Monitoring & Traceability Issues

CHAPTER 10 - CONCLUSION AND RECOMMENDATIONS 95
10.1 Conclusions
10.2 Recommendations: KB)A Development Sequence

APPENDIX: REFERENCES 1(X)

Page. 4

LIST OF FIGURES

3 - I Prediction, Estimation, to Measurement Graph 27

7 - I Architecture 1 67

7 - 2 Architecture 2 70

7 - 3 Architecture 3 72

7 - 4 Nexpert Object Representational Stnrctures 75

7 - 5 Code/System Type Hierarchy 76

7 - 6 Test Type Hierarchy 78

7 - 7 Reliability Model Hierarchy 79

8 - I Musa Basic Exec Time Model 84

8 - 2 Test Type Hierarchy 88

9 - 1 Comprehensive Software Quality Schematic 92

10 - I Software Reliability 97

Page 5

ABSTRACT

Prior and current research in the area of software quality reveals the necessity for a

more innovative approach. This project suggests the need for further exploratory work in the

application of knowledge-based and expert system technology to areas related to software
quality. Prior investigations have focused on the development of an expert system to support

the specification and generation of software quality factor goals. This project contemplates

the creation and development of a comprehensive Knowledge-Based software Quality

Assistant (KBQA), which would eventually encompass the entire software development life

cycle.

Software quality is commonly defined as the composition of thirteen software quality

factors. The most quantifiable of the factors is reliability. Because of this, the initial work
on the KBQA concept will be based on the RELIABILITY quality factor. Presently, software

developers focus their attention on simply counting the faults/defects and failures found in a

program. The bulk of this activity occurs in the latter stages of the software development life
cycle, namely the System Test phase and the Operational and Maintenance phase. The more

cost effective approach is to deal with reliability at the very beginning of the life cycle, and

account for it right up until to the end of the life cycle. In addition, a knowledge-based
system would be able to provide a feedback loop that allows for a continual improvement in

the reliability engineering process.

In this project, the preliminary design of a KBQA is presented. The key to the success

of this approach is based upon the development of the Reliability Component concept, with

the three components of reliability being prediction, estimation, and measurement. This

approach exploits the capability of a knowledge based expert system to be able to assist in the

prediction and estimation of reliability in the earlier stages of the software development life

cycle. The KBQA should be able to apply the correct proportion of estimation, prediction,

and measurement of reliability at the appropriate stages of the soft%,. are development life cycle.

Several alternative knowledge base architectures which can support life cycle reliability

concerns will be developed. In addition, the issues concerning the support of requirements-

specific traceability and monitoring of reliability will be addressed. Hopefully, this approach
would allow for automatic generation of a requirements-specific test plan.

Page 6

CHAPTER ZERO

New Terminology

Page 7

CHAPTER ZERO - NEW TERMINOOI)GY

A key concept of this effort is to deal with reliability throughout the ,,oftware
development life cycle. This project treats the terms prediction, estinatiun. and neasurentcnt

differently than conventional research does. The following table should provide a means to
minimize confusion when reading this dcumnent:

Terminology Conventional Meaning Our %leaning

PREDICTION: Normally the level of Anticipated leve! of
reliability which can reliabilitv prior to
be predicted by use of program execution.
reliability models. The prediction is based
Requires execution of upon the software itself.
the program. Lind how the software

was produced.

ESTIiMATION: Normally the level of Anticipated level of
reliability which can reliability based upon
be estimated by use of a random sampling of
reliability miodels, program mnodtules.
Requires execution of The estimation is derived

the program. from statistical trend
analysis techniques.

MEASUREMENT: Actual reliability. Same.

Page 8

CHAPTER ONE

Introduction

Pagc 9

CHAPTER ONE - INTRODUCTION

Significant progress has been made in the establishment of Software Engineering as
an engineering discipline. Most notably is tile development of computer-aided softwarc
engineering (CASE) tools for software development, management, and evaluation. Also, there
exists a growing use of knowledge-based systems for software development, managiement,
evaluation, and maintenance. As a consequence, there is the growing availability of improved
life cycle support for software development. The two most prominent examples of attempting
to address the life cycle support for software are the Department of Defense with DOD-STD-
2167A and the Institute of Electrical and Electronic Engineers (IEEE) with P-1074,

In view of this, software development has not enjoyed the same status and success as
has hardware dcclopment. In defense of software developers, the field is relatively young
(in comparison to the other accepted engineering fields) and the state of thle art is immature.
at best. The most frequent criticisms (with the associated causes), often justifiable, are:

- Lack of corporate understanding of software development, thus leading to a lack of
commitment to quality software engineering.
- Few individuals with an adequate level of software project management education
and experience, thus leading to poor management of software developments.
- Inadequate employment of software engineering principles.
- Lack of software quality control (in comparison with hardware).
- Less than twenty universities with a software engineering curriculum (per June 1991
SEI repo'rt), thus leading to inadequate training in software engineering for both

developers and project managers.

1.1 Why do we need software quality?

Society has understood the need for hardware quality from the very beginning. The
simplicity of use of thet "hardware" product is the primary reason. Either the bridge collapses
under you or it doesn't, -r either the airplane crashes or it doesn't. The results are easily
traceable to something an individual can see, allowing self understanding and explanation.
On the other hand, software quality has lagged in receiving adequate attention since the
general public cannot "see" it. They can see the bridge, but not the CAD/CAM software that
designed it. Newer models of airplanes have computer controlled software (fly by wire

Page 10

control). People can see and ride the plane, yet they not only do not see the software
controlling the flight, most likely they do not even know that is the case! Did hardware win
Desert Storm? The Iraq's had plenty of hardware.

The most convincing argument for software quality is the fact that it is all around us.
We are continually increasing our dependence upon software-based systems, and the rate of
dependence on it is accelerating. Coupled with this is the ever increasing costs of software
failure. The economic consequences are no longer the grand worry, even though they are
considerable. We are now predominately preoccupied with human-life consequences of
software failure (i.e. safety critical applications).

There are many definitions for software quality, but they all ultimately relate to
customer satisfaction (along with the goal of continued future business). The best proof of
this is evident in the United States automotive industry. It was the effect on customer
satisfaction by quality which ultimately led to their decline. Customer satisfaction is the

primary reason for either a business's success or failure. The software development business
has long enjoyed the following status:

- The common acceptance of execution failures as being "normal" for software (yet
being unacceptable for hardware).
- The common acceptance of projects being late and/or over budget as being "normal"
for software (yet being unacceptable for hardware).
- The common acceptance of the ever escalating cost of software-development as
being "normal" for software (yet being unacceptable for hardware).
- The ability to excuse it as "software is different."

Above, we have alluded to the fact that the two primary justifications for placing a
greater emphasis on software quality to be the ever increasing dependence on software-based
systems, and the increasing costs of software failure. I have an even more important reason
which I personally believe in. Beware the Japanese. In avoiding a religious argument, suffice
it to say that the Japanese have slowly taken over many areas and are world leaders in those
areas by meticulous attention to quality. Software, if not next, is in their pipeline.

1.2 Historical Perspective

Previous Rome Laboratory work in area of software quality defined a hierarchial model

Page 11

which identified thirteen software quality factors. The model hierarchy was based around the
idea of software quality factors, criteria, and metrics. The framework was defined as:

1. Software Quality Factors - Behavioral characteristics of the system.
2. Software Quality Criteria - Decomposition of the factors into attributes which relate
to software itself.
3. Software Quality Metrics - Measurements of the criteria.

The basis for the concept of employing software quality factors has roots in RADC-
TR-77-368, titled Factors in Software Quality by McCall, et al. This effort had a follow-on
effort to further define the work in RADC-TR-85-37, itled Specification of Software Quality
Attributes by Bowen et al, from the Boeing Company. This effort resulted in the RL
(formally RADC) Software Quality Framework, a three volume set detailing the specification
and evaluation of software quality in a manner consistent with Department of Defense
standards. Volume I was a general introduction to software quality attributes. Volume I was
the specification guidebook which dealt with the specification of software quality goal,.
tailoring of the framework for individual applications, and the prioritization of the software
quality factors. Volume Ill was the evaluation guidebook and addressed the evaluation of the
software quality factors and measurement of the achieved product.

The representation of software quality as defined by the RL Software Quality
Framework is categorized by the three acquisition concerns of performance, adaptation, and
design. The thirteen software quality factors grouped into their respective categories are:

Performance:
Efficiency
Integrity

Survivability
Usability
Reliability

Adaptation:
Portability

Reusability

Page 12

Expandability
Flexibility
Interoperability

Design:
Correctness
Maintainability
Verifiability

In an attempt *o assist software developers in use of the framework, three CASE tools
had been developed. One tool, The Assistant for the Specifying of the Quality of Software
(ASQS) was designed to assist in setting software quality requirements and goals, and to tailor
the framework for individual projects. Another tool, The Quality Evaluation System (QUES)
was developed to automate the evaluation guidebook of the software quality framework.
Lastly, the Automated Measurement System (AMS) is a tool for supporting quality analysis.
With an input consisting of the requirement specification, preliminary design, detailed design,
code, and software problem reports, it provides an output of management reports, quality
reports, and statistical reports. These tool's were develop with the goal of interfacing to the

Software Life Cycle Support Environment (SLCSE). In general, these CASE tools have not
provided significant encouragement for software developers to more widely and thoroughly
use the RL Software Quality Framework. The manner in which these tools were to be
employed were as follows:

- First, users in consultation with the software developers would utilize the ASQS to
identify the desired Software Quality Specification.
- Software developers would then utilize the QUES to perform a software Quality

Measurement.
- Software developers would then inform the users of the results using the AMS in
Evaluation Reports.

Much has been written of the RL Software Quality Framework, both in favor and in
opposition. However, both sides agree on four key points. First, the Framework works!
But... Second, the Framework is considered to be too complex and expensive to implement.
Third, the Framework does not provide for a smootb'y integrated life cycle approach for
dealing with software quality issues, in that it is biased on initial specification of quality, then

Page 13

jumps to final measurement. Much of the software development process in the intermediate
stages is left out. Fourth, the Framework is more subjective than objective.

Present day thinking is on the necessity of engineering in the quality right from the
very beginning. The disagreement is over the way in which quality will be achieved,
especially in an affordable and practical manner. Software is sufficiently different from
hardware such that emulating the hardware way of doing business is inadequate. This is most
unfortunate because the hardware industry has a long and successful history of qual>;) , success,
and much of their pioneering work could have been exploited with minimal effort.

In order to better understand what has the greatest effect on quality, many other factors
must be looked at. Some of the factors which have a tremendous effect on software quality,
but have had less attention are those more involved in the actual management of the software
development process, such as:

- The quality of requirements analysis.

- The quality of requirements specification.
- The development process.

- The development method.
- The development environment/CASE.

- The quality of the developer.
- The schedule/budget.

1.3 Zeroing in on Reliability

As stated above, software quality is commonly defined as the composition of thirteen
software quality factors. All of these factors are important and should be appropriately
addressed. Of the thirteen software quality factors, the only ones that have well established
procedures in place for quantifying of are the factors maintainability and reliability. It is
generally assumed that of these, reliability is the most important. Because of this, the initial
work on the Knowledge Based software Quality Assistant (KBQA) concept will be focused
upon the RELIABILITY quality factor.

There are many factors which contribute to the reliability of a software system.
Factors of interest include different development scenarios and processes, different testing

Page 14

strategies, differences in the skills and experience of the developers, to name a few. It is
easily shown that software reliability, and quality in general, correlates with various known
and studied factors, but accurately calculating the reliability from these factors seems
impossible, or at least difficult. In the present state of software reliability engineering, most
are simply content with handling reliability as a function of the amount of effort and money
spent on testing. Studies confirm this conception, but at what cost?

In this project, the preliminary design of a KBQA is presented. The key to the success
of this approach is based upon the development of the Reliability Component concept, with
the three components of reliability being predicLion, estimation, and measurement. This
approach exploits the capability of a knowledge based expert system to be able to assist in the
prediction and estimation of reliability in the earlier stages of the software developmen, ifc
cycle. The KBQA should be able to apply the correct proportion of estimation, prediction,
and measurement of reliability at the appropriate stages of the software development life cycle.
Several alternative knowledge base architectures which can support life cycle reliability
concerns will be developed. In addition, the support of requirements-specific traceability and
monitoring of reliability will be addressed, as will the automatic generation of a requirements-
specific test plan.

Page 15

CHAPTER TWO

Problem Description

Page 16

CHAPTER TWO - PROBLEM DESCRIPTION

2.1 Introduction

Of all the software quality factors in common use, only reliability and maintainability
have a well defined measurement and evaluation procedure in place. Of these two, the
reliability factor is more important and has been better defined. Too often, it is assumed that
reliability quantification can only be used in the latter stages of software development.
However, techniques exists that could allow us to involve reliability evaluation in all phases
of the life cycle. Measurement of reliability is currently practiced mostly in the System
Testing phase and the Operational and Maintenance phase of the life cycle. In certain
situations, some researchers have attempted to estimate expected patterns of reliability using
partial system execution, This is normally attempted in those phases that involve some form
of module execution of the software (i.e. Unit Testing). Obviously, before any code has been
written, we cannot measure (or estimate) the reliability of the software. However, we are
capable of developing procedures for the prediction of reliability in earlier phases of the life
cycle such as the design phase. It is even desirable to perform reliability engineering in even
earlier phases, This hints at the possible development of a process for handling software
reliability throughout the software development life cycle. This thinking, called reliability
engineering, is considered to be the most cost effective way of developing software for
reliable operation (or quality in general).

A common definition is: " Software reliability engineering is the applied science of
predicting, measuring, and managing the reliability of software-based systems to maximize
customer satisfaction." In spite of this accepted definition, the practice of prediction is not
being applied, and the practice of estimation is not much more than a mirage. There are many
reasons favoring the application of software reliability appraisal throughout the software
development cycle. Some of the most important are:

- The prediction of reliability during conceptual phases.
- The establishment of realistic numerical reliability goals during definition phases.
- The establishment of existing levels of achieved reliability.
- The monitoring of progress toward achieving specified reliability goals or
requirements.
- The establishment of reliability criteria for formal qualification.

Page 17

Electronic engineers have been successfully applying reliability engineering techniques
to hardware systems for quite some time now. Using several ideas borrowed from the
hardware development arena, and creating some new concepts, Musa defines software-
reliability engineering as:

- Helping select the mix of principal quality factors that maximize customer
satisfaction.
- Establishing an operational profile for the system's functions (frequency of function
use).
- Guiding selection of product architecture and efficient design of the development
process to meet the reliability objective.
- Predicting reliability from the characteristics of both the product and the
development process.
- Estimating reliability from failure data in test, based on models and expected use.
- Managing the development process to meet the reliability objective.
- Measuring reliability in operation.

- Managing the effects of software modification on customer operation with reliability
measures.
- Using reliability measures to guide development process improvement.
- Using reliability measures to guide software acquisition.

The initial definition for a Knowledge Based software Quality Assistant (KBQA) will
be centered around reliability. Let it be noted that the other software quality factors have not
been forgotten with this initial focus on reliability. This "software-first" life cycle approach
developed for reliability will be designed to be extensible to the other software quality factors
in the future.

2.2 Present Practice

Software reliability in an operational environment can presently be accurately
measured. This is where the software failure intensity models are normally employed. Often,
it is normally straight forward to emulate the operational environment when performing
testing. Some general reliability terminology (IEEE) for discussing reliability related matters
are:

Failure - departure during operation

Page 18

- A property of execution behavior.
- Can only be observed when the program is executing.

Fault - defect in the program which when executing causes the failure.
- A property of the program itself.

- Can be observed when the program is not executing.

The premier body of standards development in this field is the IEEE. They have
published an "Unapproved Draft - Published for Comment Only" document titled Standards
for a Software Quality Metrics Methodology, dated April 1, 1990. The standard is essentially
a clone of the Rome Laboratory (RL - formally RADC) Software Quality Framework. In
section 3.0 of the document, titled Purpose of Software Quality Metrics, the use of metrics is
heavily weighted to the specification and measurement of software quality. The reliability
thinking is augmented toward the behavior of failures, which are affected by two principal
factors:

1. The number of faults in the software being executed.
- difference between the number introduced and the number removed.

2. The execution environment or operational profile of execution.

This emphasis on execution behavior is unfortunate since at that late time, it is "after-
the-fact". Earlier life cycle reliability concerns is centered around the occurrence of faults.
A few fault analysis techniques exist and are normally weighted toward code size and code
complexity metrics. However, even at this point, considerable time and expenditures have
been expended on the earlier phases of the life cycle. There is very little emphasis placed on
early life cycle reliability engineering, and what little there is, has not been defined or
developed into a manner which encourages use (or even is usable).

Reliability models have usually been defined with respect to time, although it would
be possible to define them with respect to other variables. Other metrics may include the
breadth of testing, the depth of testing, the number of test cases run, and the percentage of
requirements tested. The two primary kinds of time that are considered are:

1. Execution Time - is more important to the developer.
2. Calendar Time - is more important to the customer.

Page 19

Several reliability models are well developed, and have been in wide use during the
System Test and Operational and Maintenance phases of the life cycle. The four general ways
of characterizing failure occurrences in time are:

1. The time of the failure.
2. The time interval between the failures.

3. The cumulative failures.
4. The failures experienced in a time interval.

In summary, the present techniques employed to measure reliability are well

established and seem to work. The present techniques to estimate reliability are based upon
partial program execution techniques. Their development is incomplete and the accuracy of

their result are limited. Estimation techniques have seen use, but to a lesser extent. The
present techniques to predict reliability are not well founded, thus they have not been used.
Also lacking is a smoothly integrated life cycle approach to manage reliability engineer;ng.

In general, this is also true for the other factors representing software quality.

2.3 A Better Way

To meet the software quality challenge, reliability considerations must be pushed up

to the front of the life cycle. Also, well defined procedures must be used to monitor and track
the progress of meeting the desired reliability goals. During the software development
process, we must be able to move away from relying on post-coding measurement, and start

to develop a RELIABILITY PREDICTION capability. Also, we must develop a better
procedure such that RELIABILITY ESTIMATION is more frequently and accurately
employed. Finally, an automated tool to assist in choosing the best reliability measurement
model must be developed to assist software developers during the later stages of the life cycle.

Some of the ingredients used to predict reliability are more common sense than
science. The foundation for reliability prediction can be based upon two primary criteria:

1. Software Domain: inherent problems (i.e. real-time embedded systems).
2. Software Development Process: i.e. SEI Software Capability Maturity

Measurement.

Page 20

We can also perform pseudo-measurement (still considered to be only a prediction) of

reliability by an analysis of the practices in use by the software developers. Such traits to

look for are:

- Proper educational/training programs in place.
- Lead developers already at a high level of capability/experience.
- Established testing procedures in place.
- Successful history of continually increasing reliability.
- Proper management process in use.

Next, we must be able to estimate reliability after coding has been initiation. Using

advanced statistical trend analysis techniques, we should be able to employ reliability

estimation procedures. This involves accurate parameter estimation using "partial sytem"
(partial execution/testing) data.

Finally, optimizing the measurement (i.e. testing/V&V) process is another high priority

of the KBQA. Reliability generally increases with the amount of testing, but it can also
increase with optimizing the choice of test procedure selection and test case selection and
generation. Thus reliability can be closely linked with project schedules, and intimately tied
in with project management. Some desired features/capabiIities include:

- Assistance in choosing the best reliability model for individual models/systems.
- Automatic test plan generation.
- Testing left to reach goals.
- Testing/cost trade-offs.

An aspect of software development that must also be addressed concerns software

reuse. The general beliefs which seem to favor a greater emphasis on the practice of software
reuse are:

I. In general, only code that is new or has been modified results in fault introduction.

Code that is reused from other aoplications does not usually introduce any appreciable
number of faults, except in the interfaces.

2. Code which is reused is normally debugged in other applications, The only

possible consideration is reuse of code that has a different "level" of reliability.

Page 21

In summary, the present practice is to place far too little emphasis upon the use of
prediction in software reliability engineering. Also, a greater emphasis must be place on the
use of estimation in software reliability engineering. The bulk of the reliability related
emphasis is placed on post coding measurement using several established reliability models
(i.e. measurement of execution behavior). At this point in the life cycle, it is much more
expensive to correct reliability deficiencies. This practice is unfortunate, since only after the
system has been "delivered" to the customer, does concern develop as to whether or not the
initial reliability goals have been meet. Should the reliability goals not be attained, it is much
too late to significantly impact what could have been done.

2.4 Project Scope

As stated above, the present emphasis on the quantification of reliability is based
towards the end of the life cycle where actual reliability data is available (i.e. failures per cpu
hour). The scope of this effort is to develop the initial definition of a Knowledge Based
software Quality Assistant (KBQA) with a focus on reliability. The KBQA will employ a
three pronged attack to address the software reliability issues:

1. Reliability Prediction - determination from properties of the software product and
the development process (prior to any execution of the program).

2. Reliability Estimation - statistical inference procedures are applied to failure data
taken from partial program execution (i.e. unit execution).

3. Reliability Measurement - use of an expert system to assist in optimizing the choice
of reliability models to employ based upon the prevailing circumstances. Included
with this is the optimization of test procedure selection and test case selection and
generation.

A key capability of the KBQA will be to "blend" the three (prediction, estimation, and
measurement) into a single threaded process. Previously, this has not been possible.
However, use of knowledge based expert systems will provide the capability to implement this
process.

Page 22

CHAPTER THREE

Reliability and the Life Cycle

Page 23

CHAPTER THREE - RELIABILITY AND THE LIFE CYCLE

3.1 Introduction

The intent of using a life cycle approach to software development is threefold. First,
to improve the efficiency of the software development process. Second, to provide an avenue
for efficient maintenance of deployed software. Third and most importantly, is meeting the
user requirements. There is a variety of software development models that address the life
cycle approach, each of which have been developed to meet a particular users needs.
Regardless of the number of differcnt life cycle models in existence and use, reliability
engineering can be applied to any of them. The most important business that must be
conducted is the application of reliability engineering throughout the life cycle, for which ever
one is used.

3.2 DOD-STD-2167

For this project, the task can be simplified by focusing discussion on a single life
cycle. The life cycle that will be used to discuss my proposed life cycle approach to software
reliability engineering will be a simplified DOD-STD-2167A life cycle. My academic sponsor
for this project is the United States Air Force, thus I am proficient with this life cycle. From
the document DOD-STD-2167A, titled Defense System Software Development dated 29
February 1988, the military standard for the life cycle is defined as:

a. System Requirements Analysis/Design.
b. Software Requirements Analysis.
c. Preliminary Design.
d. Detailed Design.
e. Coding and CSU Testing.
f. CSC Integration and Testing.
g. CSCI Testing.
h. System Integration and Testing.

Page 24

The system is considered to be composed of several components; Computer System
Unit (CSU), Computer System Component (CSC), Computer System Configuration Item
(CSCI), System Segment, and System. A hierarchial diagram of this breakdown is as follows:

Unit (CSU) --> Component (CSC) -.> Configuration Item (CSCI) --> Segment -- > System

The DOD-STD-2167 military standard has just recently undergone a revision, and the

CSCL category has been removed in an attempt to streamline the standard, The hierarchial
diagram of this new breakdown is as follows:

Unit (CSU) ---- > Component (CSC) ---- > Segment ---- > System

It is likely that DOD-STD-2167A will follow suit in 1993 when it is up for revision.
Thus the definition of a software system will probably have a nomenclature consisting of

units, components, segments, and systems.

3.3 Generic Life Cycle

I have made some minor modifications to the DOD-STD-2167A life cycle model by
simplifying it to make it clearer for our purposes. The intent here is to focus on reliability
engineering, and not life cycle religion. The modifications include the addition of a
"Feasibility" stage and an "Operational and Maintenance Phase". The deletions are centered
around the system/sub-system and segment partitions. The life cycle that we will concentrate
on looks like this:

0. Feasibi!ity Phase.
1. Requirements Phase.

2. Design Phase.
3. Coding/Unit Testing Phase.
4. Integration/Integration Testing Phase.

5. System Testing Phase.
6. Operational and Maintenance Phase.

Page 25

The Feasibility phase is indexed with a zero to clarify the fact that it is not an actual
phase of traditional software development. However, even as a precursor to software
development, it is a phase where reliability can be addressed. The Operational and
Maintenance phase is also not ordinarily considered to be part of the software development
process. However, in focusing in on reliability, much can be learned about how the system
development process affects software reliability by studying system behavior in the operational
environment. It is hoped that by using some form of "feedback-loop", that lessons can be
learned about software reliability and then be used to refine the reliability engineering of
software devel,,- ent. Only in the operational environment can we definitively measure what
we have accoi1 iii shed.

3.4 The Reliability Component Concept

Reliability can be handled throughout the life cycle by three means: Prediction,
Estimation, and Measurement. It is not a clear division, however, and requires that the three
techniques be blended into a single threaded process. In figure 3-1, a graph of the life cycle
shows an example blending of prediction, estimation, and measurement based upc:i the state
of the life cycle. A simple formula can be developed which we will base the reliability
appraisal on:

Reliability := SUM (%Prediction + %Estimation + %Measurement)

Where the sum of the %'s must equal one. At any stage of the life cycle, the
reliability of a system can be specified by the sum of the reliability "components" with their
corresponding weights. In figure 3-1, it is easily seen that at the project's Requirements
phase, the only component of reliability is that of Prediction. In other words, we can say:

Reliability := 100%Prediction + O%Estimation + 0%Measurement
or

Reliability := l(X)%Prediction

Of course, this is more or less obvious, but it serves the point of illustration. At the
other extreme of the life cycle, it is just as obvious that reliability in the Operational and
Maintenance phase can be defined as:

Page 26

v 0

* ~6Ullso± WG1I~SA

* ~isoi 4fuf/6uip00

* u6sea]

* slueweJinbeH

0 0 0
o 0 Eto a) LT)

ccv

Page 27

Reliability := O%Prediction + O%Estimnation + lO0%Measurement

or
Reliability := 100%Measurement

Where the formula becomes valuable is in the central area of the life cycle where
reliability must be defined as a factor of all three components.

Special Note: It should be noted in figure 3-1 that the reliability component mixture
percentages are not hard and will vary from project to project. The figure should be
used only as an illustrative representation of the reliability component concept.

Using this arbitrary example, it can be seen that the reliability in the Coding/Unit
Testing Phase could very well be defined as:

Reliability := 20%Prediction + 60%Estimation + 20%Measurement

The 20% prediction and the 60% estimation is intuitive. For estimation, the small
sample size of units that have been tested can provide a valuable insight into the system's
reliability using statistical trend analysis techniques. For prediction, there will probably still
be a number of units not yet coded, thus for this portion of the system, we still must rely on
the original predictions. Also, the combinatorial effects of the reliability of individual
modules, once integrated, will have to be predicted. Then again, as values of the effects of
integration on reliability becomes available, the estimation of these integration affects on
reliability can be calculated - and fed into the equation. What may not seem intuitive is the
20% measurement - since measurement is normally considered to be possible only after coding
and integration is complete. Using the DOD-STD-2167 nomenclature, there are segments that
make up systems; i.e. sub-systems in their own right. In small systems, there will not be a
measurement component and reliability will be given just by prediction and estimation.
However, in places where a large system might be composed of, say, four independently
running systems, and each independent of one another, we need a way to specify that some
part of the system is indeed measurable. This may complicate things and cause some
confusion, but I believe the added flexibility to account for such situations is well worth the
effort.

Page 28

3.5 Reliability: Phase by Phase

In handling reliability in a life cycle manner, we have to address what considerations
must be accounted for in each phase of the life cycle. This phase by phase (i.e. serial)
discussion of reliability is not meant to imply that the methodology will not work in another
software development paradigm (i.e. Object-Oriented/Parallel). It is just that for our
discussion, it simplifies the rationalization process of the software Reliability Component
concept. Below is a table in bullet format of our example life cycle, with the methodology
and considerations which are necessary to appraise reliability at each distinct phase.

0. Feasibility Phase: Pure Prediction.
Method: Very high level evaluation.

- Software development process (reference SEI).
- Application domain.

- Technological considerations (i.e. pushing state-of-the-art).
- Look at prior work in similar areas (success versus failure).

Goals:
- Establish reliability requirements.
- Perform high level tradeoffs.
- Relate reliability to user.
- Set reliability goals for system.
- Allocate reliability goals to hardware and software.
- System reliability assessment.

Common Question: "Is it worth it at this phase to attempt to model reliability
predictions with so little information."

The Answer:
"The application of software reliability engineering techniques during this phase
forces the developers to focus very early on reliability issues and baseline
assumptions about the product's reliability before development begins. The
situation would be no worse than if you didn't attempt to do it anyway."

Page 29

1. Requirements Phase: Pure Prediction.
Method: Similar to Feasibility phase, but more detailed.

- Perform analysis of failure intensity objectives.
- What does the customer consider to be a failure.
- Severity level of each identified failure.
- Estimated cost to achieve reliability goals.
- Perform more detailed trade off analysis.

- Develop a prediction of the reliability based upon the operational
profile/domain.

- i.e. (Al-based software usually has reliability problems since V&V of
this domain is still at it's infancy; however, mathematical domains such
as signal processing are straight forward).

- Software development process (reference SEI).
- Technological considerations (i.e. pushing state-of-the-art).
- Look at prior work in similar areas (success versus failure).

Goals:
- Generate product-requirements specification (with reliability allocation).
- Analyze testability of requirements
- Analyze feasibility of requirements

2. Design Phase: Predictive in Nature/Estimative Potential To Be Determined.
Method: Similar to Requirements phase, but much more detailed.

- Transform the requirements specification into a design specification.
- Prediction based upon SEI CMM of the developers.
- Prediction must also address what is "technology feasibility".

- i.e. to what level is the state-of-the art being pushed.
- Effects of software reuse and prior experience in this area.

Goals:
- Decompose and budget reliability requirements to software components.
- Establish design practices to encourage reliable software design.
- Analyze/simulate reliability performance.
- Predict software reliability.

Page 30

3. Coding/Unit Testing Phase: Predictive and Estimative.
Method: Mixture of Design phase prediction with a first look at the actual fault
density of random modules.

- Does the testing of selected units imply that the desired reliability can be
achieved with the proposed design?
- Predict combinatorial effects of future unit integration.
- Estimation based upon partial execution (i.e. unit testing).

- Can only achieve relative reliability measurements.
- Statistical trend analysis techniques (i.e. connect the dots).

Goals:
- Build in reliability.
- Establish coding standards to encourage reliable software production.
- Conduct UT/Debugging to remove module level faults.
- Prototype builds for user feedback.
- Estimate software reliability.

4. Integration/Integration Testing Phase: Strongly Estimative.
Method: Unit Test Prediction of effects of Integration replaced with actual o b s

erva
tion
S.

- Estimate complete system after integration.
Predict changes due to laboratory and operational environment testing

differences.
Goals:

- Test to requirements
- Test thoroughness evaluation
- Maintain standards during rework
- Insure test quality
- Regression testing
- Estimate software reliability
- Problem report statistics
- Acceptance testing

Page 31

5. System Test Phase: Measurement with Some Prediction & Estimation.
Method: Estimative accuracy of laboratory environment.

- Predict and Estimate the measurement accuracy affected by the realistic
emulation of the operational environment.

Goals:
- Hardware/Software Error Analysis
- Hardware/Software Reliability Integration
- System test thoroughness evaluation
- Insure test quality
- Regression testing
- Estimate system reliability
- Test assessment in operational environment.

6. Operational & Maintenance (O&M) Phase: Pure Measurement.
Method: Measurement of customer observations.

- Results can be collected and fed back into the process to assist in future
predictions.

Goals:
- Regression testing
- Quality assurance
- Reliability measurement
- Fix existing faults.
- Enhancement.
- Trace reliability looking for long-term-usage degradation.

Page 32

CHAPTER FOUR

Reliability Measurement

Page 33

CHAPTER 4 - RElIABILITY MEASUREMENT

4.1 Introduction

In the next three chapters, the prediction, estimation, and measurement of reliability
will be covered. My preferred order in which to deal with reliability is to start with the basic
concepts of reliability measurement, then go on to reliability estimation, and then finally
reliability prediction. Notice that this sequence is in the reverse order in which one would
actually perform reliability engineering. Considerable work has been performed in the area
of reliability measurement and has resulted in established techniques (and formulas) for
measuring reliability. Reliability estimation will follow in chapter five. The proposed
estimation techniques are based upon a partial set of reliability measurements, combined with
sophisticated formulas which combine the reliability measurement models with trend analysis
statistics. The goal is to estimate the final product's reliability based upon a partial execution
of it's subcomponents. This area has seen limited use and understanding, but offers great
potential. Finally in chapter six, reliability prediction will complete the discussion of the three
components of reliability. This is largely an unexplored area, and offers great potential foi
further research.

4.2 Reliability Measurement: A Function of Testing

The generally accepted definition of software reliability is the probability of failure-free
operation of a computer system in a specified environment for a specified time. Even though
reliability is affected by the development environment and the design methodologies used on
the project, these factors are not easily varied while the project is underway. Making major
changes to either of those two factors is considered detrimental from a project management
point of view (cost, schedule, and performance). This ultimately leads to depending upon
Validation and Verification Techniques (i.e. Software Testing) as the primary determinate of
reliability. The time required, resources needed, and costs associated with testing are mainly
dependent on the initial reliability of the design and code and the reliability goal to be
attainted.

The manner in which reliability is measured is by testing the software. There are
predominantly two distinct approaches to software testing, with a third being a combination

Page 34

of the two. Following is a partial list of the more common software testing techniques:

1. Structural (White/Glass Box)
- code reviews/inspections

- statement
- branch
- multiple condition

- domain
- mutation

2. Functional (Black Box)
- equivalence partitioning
- boundary value

- performance
- random

3. Hybrid (combination of Structural and Functional)
- revealing sub-domains

The final determinate of reliability measurement must occur in the operational
environment. Frequently, during system testing, the operational environment is not available
and must be simulated. Test data must then be injected into the various reliability models.
Several models have been developed to support reliability measurement. Since the purpose
of this project is to develop a Knowledge Based software Quality Assistant (KBQA), a
detailed discussion of the theory of the reliability models will not be discussed. The only
"theory" that is needed for this initial definition of the KBQA is:

- The models make the assumption that failures are independent of each other.
- The failures are a result of two processes:

- introduction of faults.
- their activation through selection of the input states.

The majority of the reliability models are classified as "reliability growth models".
Their intent is to estimate the current reliability and to predict the future reliability growth for
the software. The models base their measurement and predictions on only past failure times.
There are three limitations to the models:

Page 35

- The models treat software as a black box.
- they do not incorporate information on program size, complexity, and other
known metrics.

- The models do not make use of additional data which arises during testing.
- The approach does not give useful estimates for extremely high levels of reliability.

Special Note: The "prediction" offered by these reliability models are not to be
confused with my definition of prediction. By prediction, I am referring to factors
primarily associated with the software itself (i.e. size and complexity) and of the

software development process (i.e. SEI Capability Maturity Measurement).

In summary, the various factors affecting reliability measurement are time between
failures, number of runs between failures, source code metrics, number of discovered errors,
programmers experience, testing method, time spent on testing, stability of the specification,
testing compression, program category, and the level of programming technologies (design).
One of the bigger issues, which is also a sleeper issue, which is very influential in affecting
the level of reliability is the issue of software reuse! The KBQA could have the capability
of justifying the cost of designing software for reuse. A trade off analysis showing the cost
savings of reliable, reused software modules (which after a few projects should be extremely
reliable), versus creating new software and testing it to the same level of reliability.

4.3 Software Reliability Model Classification

Following is a general classification of software reliability models with some of the
more common models listed. Again, these models are based upon observed failure data,
which implies execution of the program. The classifications of the models are partitioned into

four categories. The categories along with some characteristics are as follows:

1. Time Between Failures
- Models postulate the shape of the error detection rate after each observed failure.

Jelinski and Moranda De-Eutrophication Model

Geometric De-Eutrophication Model
Schick and Wolverton Linear Model
Schick and Wolverton Parabolic Model
Goel and Okumoto Imperfect Debugging Model

Page 36

Hybrid Geometric Poisson
Littlewood-Verral Bayesian

2. Failure Count
- Models postulate the failure rate over a period (e.g. testing period), during which many
errors could be detected.

Goel-Okumoto Non-homogenous Poisson process model
Schneidwind Model
Goel-Modified Non-Homogeneous Poisson Process Model
Musa Basic Execution Time Model
Musa Logarithmic Poisson Execution Time Model
Shooman Exponential Model
Generalized Poisson Model
IBM Binomial Model
IBM Poisson Model
Modified Jelinski and Moranda
Modified Geometric De-Eutrophication Model
Modified Schick and Wolverton

3. Input Domain Based
- The input domain is partitioned, and test points are chosen from each partitia.

Nelson
Brown-Lipow
HO
Ramamcorthy and Bastani

4. Error Seeding
- Intentional errors are randomly seeded among the unintentional errors. Testing finds the
indigenous and the seeded errors. This technique supposedly allows for accurate estimation
off indigenous errors.

Mills Hypergeometric Model
Lipow's Extension of Mills Model
Basin's Extension of Mills/Libow Model

The intent of this project is not to provide a detailed examination of the different
characteristics and behavior of each software reliability model. The immediate intention is

Page 37

to provide a technique supporting the optimization of model selection. Summarizing the key
assumptions by model category:

Times Between Failures (TBF Models):
- independent times between failures
- equal probability of the exposure of each fault
- embedded faults are independent of each other
- faults are removed after each occurrence
- no new faults introduced during correction (i.e. perfect fault removal)

Fault Count (FC) Models:
- testing intervals are independent of each other
- testing during intervals is rtasonably homogeneous (probability distribution does not
vary with time).
- numbers of faults detected during non-overlapping intervals are independent of each
other

Input Domain Based (DB) Models:
- input profile distribution is known
- random testing is used
- input domain can be partitioned into equivalent classes

Fault Seeding (FS) Models:
- seeded faults are randomly distributed in the program
- indigenous and seeded faults have equal probabilities of being detected

4.4 Expert System Based Model Selection

The first step in developing an architecture for optimal reliability model selection is
determination of just what information the KBQA must provide. It is possible to create
several decision tables which have the software reliability models on one axis, and the
following choices on the other axis:

What they can predict (e.g. MYFF, number of errors).
What type of data they need as required parameters (e.g. time between failures,

number of failures between observations, ctc).
- What assumptions they are based on.
- What types of software they can analyze.

NModel appropriateness throughout the life cycle.

Page 38

etc.

The decision table approach helps in the development of a "cook book" style of
reliability model selection. This still falls short in providing a true solution. With all the
different models, the different phases of the life cycle, etc., there would be far too much data
to wad- through in a reasonable amount of time with any hope of optimizing the model
selection. The decision table is a good starting point, but a more substantial automated
methodology should be used to assist in the model selection.

The result of extending the idea of a decision table is the concept of a Decision
Support System (DSS). Most of :he work in the DSS area has been a combination of
Operations Research and Artificial Intelligence (specifically Knowledge-based Expert
Systems). The Operations Research approach works well in situations where mathematical
models or "rigid" decision tables can be formulated. Operations Research falls short when the
decisions lack structure and uncertainty exists amongst the decisions. Expert Systems, on the
other hand, thrive in research areas where formal structure of decision is lacking, and
uncertainty amongst the decisions exists. It would appear that selection of the appropriate
software reliability model is a problem well suited for attacking by Expert Systems. This is
especially true in later chapters of this project when reliability prediction and reliability
estimation is addressed.

Use of these software models require that the program (or sub-programs) be executed.
The applicable phases of the life cycle in which these software reliability models would most
likely be employed are in the later stages of the software development life cycle, and are:

- Coding and Unit Testing Phase.
- Integration and Integration Testing Phase.
- System Testing Phase.
- Operational and Maintenance Phase.

The principle criteria for model selection will vary throughout the life cycle. However,
one criteria stands out for all phases, that being what information is available. A prototype
architecture for a knowledge based criteria scheme supporting reliability model selection
would include:

Page 39

1. Basic Assumptions:
a. Initial Fault Content (Known/Unknown).
b. Fault Occurrence Independence (Yes/No).
c. Fault Timing Independence (Yes/No).

d. Fault Removal.
- New Fault Introduction (Complete/Partial).
- Removal Time (Negligible/Duration).

e. Testing Environment.
- Random.

- Predetermined.

2. Formula Type (Linear/Logarithmic Poisson/Bayesian/etc.):
- Curve shape (i.e. over estimate early).
- Basic mathematical theory involved.

3. Parameter Estimation (for initial data requirements of model):
- Which ones required by each formula (checklist).
- Degree of confidence of each parameter if estimated.

4. Model Applicability:
- For various life cycle phases.
- For correct answer (i.e. time to test done, fault density, etc).
- For Project Management answers (cost, schedule, and performance).

The actual creation of the knowledge base according to the above underpinnings is
beyond the scope of this project. Obviously, the knowledge base cannot be of a simple
monolithic design, but must be multidimensional. An object hierarchy for the reliability model
selection rule base should be based upon the above criteria developed for each model. A
knowledge base supporting the reliability model selection would be represented as a tree, with
parameters at the bottom and the software reliability models at the top. The reason for this
representation is to improve efficiency of the inferencing process by having a "fan-in" of
knowledge (goal reduction). The prototype design is developed and presented in chapter 7.

For this knowledge representation, either forward chaining or backward chaining would
be appropriate depending upon the question asked,. The inferencing would be forward if the
parameters were known and a model must be selected. Conversely, search

Page 40

would be backward if the model was known based upon a desire to have a specific answer
(i.e. testing time left), and it must be determined what reliability model must be chosen to
given certain initial parameters. Additionally, there are times when so little information is
known, that a combination of forward and backward chaining would be required to "find"
acceptable compromises between parameters and models. This concept is further explored in
chapter 7.

4.5 An Example

The reliability models most often referenced and discussed are the Musa Execution
models. For this reason, this model will be used for some detailed discussions of the
knowledge based selection of a software reliability model. Two models make up the Musa's
execution model:

1. Basic Execution Model - linear
2. Logarithmic Poisson Execution Model - nonlinear

Knowledge base development usually follows one of two approaches. For seemingly
unstructured domains (i.e. medical expert systems) where rules of thumb preside, an "ad hoc"
rule base is developed. The advantage to this approach is how it handles the chaotic/random
information. The disadvantage is that the rule base must be "tuned" since rules can often
contradict each other in a "transparent" manner. The other approach is to organize the
knowledge into a structured format (i.e. decision tables), or a least to arrange the knowledge
as best as possible. The advantages of the more structured approach include efficiency, easier
maintenance, and reliability. The biggest disadvantage is that the knowledge must be in a
form that can be "formatted". Later, it will be seen that the Expert System chosen has a
sophisticated built-in facility for knowledge base development and tuning.

Here, sonic of the information is available for the Musa Execution models that were
chosen for this example. Again, for a complete KBQA, this information should be available
for ALL the reliability models. For the execution models:

Page 41

Parameter Basic Logarithmic Poisson
S...

Initial Failure Intensity Lambdao Lambdao
S...

Failure Intensity Change:
Total Failures: v0 -

Failure Intensity Decay Fee

For both models, values are needed for the initial failure intensity Lambda0, and the
failure intensity change. Lambda,) is identical for both models, but the failure intensity change
is different. The basic model requires the value for total failures. Initially, this can be
predicted (before program execution) from characteristics of the program itself and of the
software development process (elaborated in chapter 6). Later, it can then be estimated once
a program has executed long enough so that statistically significant failure data is available
(elaborated in chapter 5). For the logarithmic poisson model, the failure intensity decay
parameter, Fee, is required. This also has predictable and estimatable procedures. But
assumirng that we are in the measurement phase, this information is known. Some example
rules focusing on use of the Musa Execution model during later stages of the life cycle might
look like this:

RULE 001: If a more accurate estimate is available for the Total Number Of Failures
parameter, in comparison to the Failure Intensity Decay parameter, then there
is evidence to support the use of the Basic Execution Model over the
Logarithmic Poisson Model.

RULE 002: If a high predictive validity is needed early in the period of execution, and if
the program is expected to be used with a decidedly nonuniform operational
profile, then there is evidence to support the use of the Logarithmic Poisson
Model over the Basic Execution Model.

RULE 003: If prior to program execution it is desired to conduct studies or make reliability
predictions, then there is evidence to support the use of the Basic Execution
Model over the Logarithmic Poisson Model.

Page 42

RULE 004: If a value for Mean Time to Failure (M1TF) is desired, then there is evidence
to support the use of the Logarithmic Poisson Model over the Basic Execution
Model.

Of course, these rules are overly simplistic for illustrative purposes. In a realistic
situation, it is expected that some predicted and estimated values for both of the parameters
would be known, but to varying degrees of certainty. Thus the expert system would really
have a certainty factor value (C.F. - degree of confidence) for each of the parameters. The

example above was illustrated with an unrealistic binary decision. The KBQA would have
to take several additional issues into account, one being the stage of the life cycle.

More rules can be based upon what we are expecting to get out of the use of the
reliability model. This decision table is taken from Musa:

S...

Purpose of application or existence of condition. Basic LP
S...

1. Studies of predictions or existence of condition X
before failure data taken
2. Studying effects of new s/w engineering technology X
(through study of faults; which must be related to failure intensity)
3. Program size changing continually and substantially X
as failure data is taken
4. Highly nonuniform operational profile X
5. Early predictive validity important X

The above preceding discussion was based upon the execution model. Still more rules
can be based on the differences between the execution and calendar models based upon what
you are looking for, and what information is available. The calendar model is based upon a
"debugging process model". Information required for this model is:

1. Resources used in operating the program for a given execution time and processing

an associated quantity of failures.
2. Resource quantities available.

Page 43

3. The degree to which a resource can be utilized (due to bottlenecks) during the
period in which it is limiting.

The benefits of using the calendar model is to develop solutions useful for planning
schedules, estimating status and progress, and determining when to terminate testing.
Parameter information required for this model are:

1. Planned - involve resource quantities available.
- Ascertained from managers or project planners.
- Determined by formula or experience.

2. Resource usage - involve resources quantities required.
- Batch versus interactive debugging.
- De' ,Kgging aids available.
- Computer used.
- Language used.
- Administrative and documented overhead associated with corrections.

A significant level of detail is required just to develop a small example knowledge base
for the Musa models, let alone development of a knowledge base for the other common
models (as previously listed). Upon a detailed analysis of the various reliability models, it
may be possible to eliminate some of them should similarities exist.

4.6 Knowledge Base Scope

Extending the scope of software quality to cover the complete spectrum versus just
specializing on reliability, it is easy to visualize what a complete KBQA can deliver. Musa
identifies some of the questions which can be answered:

System Engineering Applications
1. Specifying software quality to a designer.
2. Estimating cost of failure for an operational system.
3. Pricing a service.
4. Helping establish the market window for a software product (or product

containing software).
5. Investigating trade-offs between software quality, resources, cost, and

Page 44

schedule.

6. Selecting the failure intensity objective.
7. Determining the amount of system testing required.

Project Management Applications:
1. Progress monitoring.
2. Scheduling.
3. Investigation of alternatives.

Musa also defines five key roles in software quality engineering. The expert system
could be tailored to provide a different interface and consultation session based upon the
individual needs of each role. Specific needs of each of the Musa role are:

1. Managers
- Monitoring the status of projects that include software.
- Predicting the release date of software.
- Judging when to allow software changes in operational systems.
- Deciding on what software engineering technologies to apply to a project.
- Deciding whether to accept delivery of subcontracted software.

2. System Engineers:
- Automated/assisted software reliability model selection and tuning.
- Trade-off's between reliability, resources, and schedules.
- Investigation of options for allocation of reliability between components of the
system.
- Deciding on what software engineering technologies to apply to a project.
- Impact of a proposed design change on reliability.

3. Quality Assurance Engineers:
- Automated data collection procedures that are needed to measure software reliability.
- Automated/assisted test data processing.
- Identify initial parameter values.

Page 45

- Process resource expenditure and failure data.

4. Test Team:
- Automated (or at least assisted) test plan generation.
- Automated failure records keeping.

5. Debuggers:
- Automated record keeping.
- Automatic communique dispatching to others regarding fixes.
- Data base of faults for future "tuning" of the software development process.

4.7 Summary

To develop a fully functioning KBQA, little research must be performed in the area
of new software reliability models. There is a sufficient number of adequate models available
to support the basic needs. To fully develop the KBQA concept for the measurement of
reliability, the following are the very first tasks that are required to be performed:

1. Exhaustive analysis of the presently available software reliability models such that
a structured decision table (or as structured as possible) representation can be
developed. It is expect that some of the models can be eliminated due to redundancy.

2. For the decision tables, develop a rule base supporting the criteria required for the
models to work versus the answers that are required of them.

3. Development of a control structure which allows for the optimization of model
selection based upon the relative certainty of information available.

4. Development of rules to optimize the selection of reliability models based upon life
cycle considerations.

Page 46

CHAPTER FIVE

Reliability Estimation

Page 47

CHAPTER FIVE - RELIABILITY ESTIMATION

5.1 Introduction

In the previous ha pter, Sof:ware reliability measurement models along with a
complementary knowledge base selection approach was discussed. Expert System assistance
in optimizing the software reliability model selection is a significant advancement, however,
more can be done. The key to successfully integrating reliability engineering into the software
development process is to calculate reliability even earlier in the life cycle. We must be able
to estimate reliability immediately after coding has been initiated. In this chapter, reliability
estimation will be addressed. Using advanced statistical trend analysis techniques, we are able
to employ reliability estimation procedures. This involves accurate parameter estimation using
"partial system" (partial execution/testing) data. As with software reliability measurement,
Expert System assistance can be used to improve the estimation process. In the next chaptcr,
the prediction of software reliability will be considered.

5.2 When to Estimate

Actually measuring the software reliability of a program in operational use is the most
accurate determinate of reliability. With the goal of handling reliability as early as possible
in the life cycle, reliability must be determined before the system is in the Operational and
Maintenance phase. For our definition in this project, estimation can be performed only when
some parts of the program are executable. Parts may be proper subprograms themselves, or
may even be modules which are exercised with specially built programs called stubs and
drivers.

This indicates that reliability assessment can occur as early as the Unit/Unit Testing,
and continue into the Integration/Integration Testing and System Testing phases of the
software development life cycle. Since without a finished product reliability measurement is
not possible, we can settle for the next best thing - reliability estimation. In this project,
reliability estimation is defined as the statistical inference procedure which is applied to
failure data taken from partial program execution, to estimate software reliability.

A conceptual barrier may exist for those who have not been exposed to elementary
statistics, or even doubt the use of such techniques for estimated purposes. However,

Page 48

sufficient evidence exists to support such techniques in all fields from medical, production
line, to even software. Of course, the accuracy is directly proportional to the sample size and
the selection techniques. There are two schools of thought which exist in sample selection.
One concept emphasizes the randomness of the sample with the goal of insuring a
representative coverage of the system. The other philosophy stresses concentration on "error
prone" modules. This project does not recommend one selection approach over the other. It
is recommended that the KBQA support both theories and keep a history of the eventual
accuracy of both. It is a possibility that characteristics can be drawn which support either
method based upon the prevailing circumstances.

In the Unit/Unit Testing and Integration/Integration Testing phases, partial program
execution is presently performed. The normal practice for testing such partial program
execution is by the use of suitable driver/stubs. However, the results of these tests are
normally used for correcting bugs, versus being used in the reliability assessment process.
This is a significant advantage of the KBQA approach.

In a way, the System Testing phase can be more difficult to determine the validity of
results, even though the system can be tested as a whole. Should the operational environment
be such that it is impossible to accurately emulate or simulate it, the reliability estimate will
be of questionable quality. Of course, should the operation environment be completely
simulatable in the System Phase, the result could actually represent the reliability measurement
itself.

5.3 Module to Module Differences

The most significant obstacle to software reliability estimation is incorporation of
failure severity propagation throughout different modules. The effects of a failure of a module
after it has been incorporated into the final program may be varied. The failure of the
individual moc'ule may result in overall system failure, or may just be localized and result in
a failure which goes unnoticed. Thus, effects should be classified by severity of the failure.
This issue can be conceptually expanded to address a failure in a simple text editor in
comparison to a fuel cooling system for a nuclear power plant. It is both the effect that the
system will experience if that module fails, and the effect that system failure will have to
other things.

Essentially, two different failure classifications must be addressed here. The first is

Page 49

the overall impact of the program's failure upon things other than itself. Three classification
criteria that are in common use are:

1. Economic Impact - expressed in terms of repair, recovery, lost business, and
disruption.
2. Human Life Impact - effects due to different systems: nuclear power plants,
air traffic control systems, military systems, etc.
3. Service Impact - i.e. interactive data processing system or telephone
switching system.

The other failure classification is the effect of a module's failure on the operation of
the program itself (i.e. system crash versus just a missing function). Significant research has
gone into this area to determine a strategy for solving the propagation issue. The basic
approach is:

1. The system should be divided into a set of components, each of whose reliabilities
is known or is easy to estimate or measure.

2. Next, relationships between the reliabilities of components and the reliability of the
system are addressed.

The relationships of modules to each other are analyzed and used to predict system
reliabilities from module reliabilities. The analysis includes an allocation or a budgeting C1
a system's reliability to is components. Of all the techniques, the preferred method to
handling severity classifications in estimating reliability and related quantities is proposed by
Musa: "Classify the failures, but ignore severity in estimating the overall failure intensity.
Develop failure intensities for each failure class by multiplying the overall failure intensity by
the proportion of failures occurring in each class."

The KBQA must be able to address this issue to successfully estimate a system's
reliability during the Unit/Unit Testing and Integration/integration Testing phases. A
knowledge base must be developed that will handle the module to module differences for both
the above failure severity classifications. The easier classification to handle is the impact on
economic, humans, or services by a failure. Development of the rule base to handle the
effects of a failure on the system itself, and base the failure by severity, will be challenging.

Page 50

5.4 System Configuration

Another obstacle to accessing reliability arises in very large systems where all the code

is not exercised. It is also difficult during testing to have complete coverage of the code. As
an example, some systems have to operate under more than one "operational mode". An

example is a telephone switching system which may be operated in either a business or
residential customer mode. In this case, the situation can be considered as having two

separate "systems", since a significant portion of the system (i.e. modules and subprograms)
is never used in one configuration or the other. The result is that latent failures may remain
hidden, either to show up at a later date, or remain hidden forever.

Yet another difficulty can occur when attempting to estimate the reliability of such
diverse systems as:

- Concurrent Systems versus
- Sequential Systems versus
- Distributed Systems versus
- Standby Redundant Systems versus
- Fault Tolerant Systems

Using conventional technologies, the complexity of such systems results in the actual
measurement of the reliability of such systems being impossible. The KBQA using statistical

estimation techniques and intelligent module selection (e.g. random versus failure prone) may
have a chance of getting a handle on this problem. A more sophisticated methodology for the
KBQA must be addressed here, else in these cases the reliability estimation may always be

suspect.

As with the problems encountered in module to module interaction, the difficulties of

assessing the accuracy of different system configurations are due to the combinatorial effects

of "different" systems working in cooperation. This is yet another area where the KBQA must

be expanded to.

5.5 Is Accurate Estimation Possible?

Possibly. This is an area where the quality of the Test Run Selection is most important

in determining the resulting quality and efficiency of testing. Due to the complexity of an

Page 51

early estimation of reliability in large and complex software development efforts, the
capability of knowledge based assistance to assist here is enormous. The primary benefit of
the KBQA concept here is by development of a capability for automatic test plan zeneration.

The problem of module to module differences by a Knowledge Based software Quality
Assistance (KBQA) would require the understanding of why some components are more fault-
prone than others. The knowledge base designed to handled such a question would have to
address such considerations as:

- The function implemented.

- The development methodology employed.
- The capability of the designers (i.e. quality of personnel).

Notice how the information we are using to estimated reliability differs from
information that was used for reliability measurement. The primary concern with reliability
measurement was selection of the appropriate reliability models to "calculate" reliability. In
estimation, the process is not so exact and has a tendency to rely on "rules of thumb". In the
next chapter about reliability prediction, the process is totally trusting of these "rules of
thumbs".

The two ways in which test run selection can be approached are deterministic and
random. In the deterministic case, each test case and its order in the test sequence is specified
with certainty. The KBQA should be able to help chose the input partitions, and determining
how many test cases should be used in selection from each partition. In random cases, more
than one test case is possible at any point, and each test case has a probability of occurrence
at that point associated with it. Here to, the KBQA should be able to help chose the test case
inputs.

Even before this, the KBQA should be able to determine which form of choosing test
run selection is specified. Recent studies by IBM have implicated the superiority of random
testing based on operational profile by a factor of 30X over structural testing for nine large
IBM products. It would even be useful for the KBQA to have such testing accuracy

knowledge.

Page 52

5.6 KBQA Estimation Inventory

The architecture of the KBQA will be such that it is extensible to account for the other
quality factors at a later date. The methodology used by the KBQA to assist in estimating the
reliability (and eventually quality) of software is:

- Estimating Before System Test:
- Design errors caught by design inspections.

- Coding errors caught by software inspections.
- Estimating During Test

- Statistical measurement techniques.
- Estimating reliability from failure data in test, based on models and expected use.

5.7 Summary

To develop the estimation functionality of the KBQA, some work will ha',e to be
performed in determining how the statistical trend analysis techniques will be implemented.
Estimating the reliability based upon partial program execution is straight forward. The more
difficult concepts to develop are how to handle the combinatorial effects of the various
reliability classifications. Another difficult task is handling the module to module differences.
The use of random or failure prone based unit/component testing is a start in handling
different system configurations.

Page 53

CHAPTER SIX

Reliability Prediction

Page 54

CHAPTER SIX- RELIABILITY PREDICTION

6.1 Introduction

The software quality factor reliability is normally considered to be a measurement-type
of process. By measurement-type, it is implied that the reliability can directly be measured
in the operational environment. In the previous chapter, it was shown that reliability can be
estimated in the Unit/Unit Testing, Integration/Integration Testing, and System Testing phases

of the life cycle. Often, this is much too late in the software development process, for reasons
of efficiency and practicality, to correct a situation gone wrong. The most efficient time to

calibrate and correct reliability is as early as possible in the software development life cycle.

Practicality enters the equation even earlier in the feasibility and design phases. If present
technology will not support the capability ambitions with the required reliability, either
alternative solutions can be cultivated, or the project abandoned altogether.

6.2 Why Predict?

Earlier, in chapter 3, the Reliability Component Concept was proposed. The three

components of software reliability engineering, in proper order, were prediction, estimation,
and measurement. Of the three components, the prediction of the reliability of the software
system from the software itself (code plus environment) and development process
characteristics needs the most attention. Prediction also is the least developed of the
components, yet offers the greatest potential for success in terms of ultimate potential payoff.

In addition, high quality early decisions have the greatest impact on project management

factors (costs, schedules and performance issues).

6.3 What to Predict?

The prediction component is a composite of two key entities. One entity involves

attempting to predict the input parameters and the other data requirements required to

administer the reliability models. The use of the reliability models as pore prediction (in our

terminology) may seem out of place since these growth models are normally used in

measurement and to prediction/estimate (in the conventional use of the terms) the future based

Page 55

upon the past. However, the reliability models do provide some important information (i.e.
Mean Time To Failures) that can be studied to see if the proposed development method and
schedules will fit in with everything else.

The other aspect of prediction is to predict the reliability on the basis of characteristics
of the software development process, from characteristics of the software itself, and from
historical success with such products. The utility of using the software reliability models for
pure prediction are debatable and need further clarification. However, use of the these
yardsticks for the aspect of reliability prediction holds the most promise. The use of
knowledge-based and expert system technology can be an integral part in the prediction
process. The Knowledge Based software Quality Assistant (KBQA) can assist the prediction
process in a analogous manner as was seen with estimation and measurement process.

6.3.1 Reliability Models:
The KBQA must be able to assist in the prediction of the parameters of all the

software reliability models. The manner in which this could be implemented will draw
heavily on the software reliability model categorization already performed for the measurement
chapter. The key additions here are to focus the knowledge base to address the parameters
themselves versus focusing on optimizing the selection of reliability models. After a detailed
list of all the parameters from all the models is performed, the list should be categorized into
groups based upon the confidence level assigned to prediction of that particular parameter.
It can be assured that some parameters are more difficult and capricious than others, and are
affected by other circumstances (i.e. life cycle). It is assumed that much of the information
developed to recommend one reliability model over another (chapter 5) can be reused or
slightly modified to assist in this area. If the knowledge base can support objected oriented
constructs (e.g. Nexpert Object), then inheritance can be employed to greatly assist in reducing
any duplication of effort.

6.3.2 Software Development Process:
The best understood methodology to assess the software development process of an

organization is by use of the Software Engineering Institute's Capability Maturity
Measurement (SEI/CMM) system. This system is available in text or electronic format (the
questionnaire is available in an automated system which runs on IBM PC's and Apple
Macintosh's). Two approaches could be used to insert this capability into the KBQA. First,
it could be coded from scratch - a rather tedious or straight-forward process. Conversely, if
the KBQA architecture allowed "external" programs to run, the prior developed versions can
be used. In the next chapter, it will be shown that the software and hardware suit

Page 56

recommended for the KBQA will allow incorporation of virtually any predeveloped software.

6.3.3 Software Characteristics:
Another manner in which to predict the reliability of the software is from the

characteristics of the software product itself. There are several source code analyzers
commercially available (i.e. AdaMat) which produces statistical analysis based upon factors
such as size, complexity, modularity, general design (i.e. overuse of Global Variables), etc.
These systems can be incorporated as is into the KBQA architecture as defined in the
following chapter. Another measure can be based upon the application's domain analysis.
Some domains put more stress on a system than others (i.e. uneven loading and "emergency"
situations). A simple example is the stress placed upon the simple Management Information
System in an office versus the Electronic Warfare system in a USAF Fighter in combat. This
implies that the hardware execution environment must also be taken into account. Another
factor involves predetermined software characteristics (i.e. Ada versus Assembler). There is
a wealth of information available comparing various languages with fault density. Yet to be
determined is the effects of design (i.e. Object Oriented versus Structured versus XYZ) on
reliability. All these determinants must be accumulated with the KBQA's knowledge base.

6.3.4 Historical Factors:
Another aspect is whether or not the developers have been successful in similar

ventures. This should encompass both the application domain (i.e. MIS versus scientific) and
other products in general. It might be feasible for the KBQA to have a company/developer
data base and keep records.

6.4 Example

As an example, it will be assumed that the system is presently in the stages of the life
cycle prior to code execution. This implies that we can be anywhere from the Feasibility
phase up to and including the Unit (coding), but not the Unit Testing phase. In a consultation
session, the KBQA must address the following issues in predicting the level of reliability
before program execution:

I. From characteristics of the software product.
2. From the software development process.
3. Historical Factors.

Page 57

In addition to the above three, assume that some additional information that is
generated by the software reliability models is also desirable. This example will taxe the full
capability of the KBQA.

First, assume that the KBQA recommended the Musa Basic Execution Model based
upon a particular request for information during the consultation session. When the program
is not yet executable, the execution time component parameters must be predicted from
program characteristics rather than estimating them from failure data. For the basic execution
time model, the parameters that are required are:

- The number of inherent faults w0.
- The fault reduction factor B.
- The fault exposure ratio K.
- The linear execution frequency f.

The KBQA could predict the number of inherent faults in a number of ways. Two of
the more common are based upon size and complexity metrics. There are a number of studies
that have found a relationship (but somewhat weak in that there are wide variations) between
the number of faults and code size. In defense of the metrics, a semi-intelligent guess is better
than no guess at all. Other metrics are based upon the complexity of the program. Where
size metrics are limited in imaginative deviations, complexity metrics have many different and
novel approaches to measuring complexity,

Predicting the number of inherent faults should not be limited to analysis of the
software product itself. A more accurate measure of the number of inherent faults can be
determined by the software development process - the kind of process that Watts Humphrey
at the SEI and Herb Krasner at SAIC are working. The most representative evidence of this
is in a comparison of the Japanese and American automotive production lines (and typical of
other products also). As a group, the typical Japanese automotive company in comparison
with a typical American company exhibits the following:

1. Produces a vehicle with higher quality.
2. Employees far fewer quality assurance personnel.

The ever quality conscience Japanese do not seem to employee many quality assurance
personnel at the end of the production line. Yet the cars leave the plant with fewer J.D.

Page 58

Power measured (Initial Quality Survey) reports of defects! If they are not checking for
quality at the end of the production line as thoroughly as the Americans are, where is the
quality coming from? There is overwhelming evidence to believe that the quality is acquired
during the process, NOT after.

A strong approach for allowing the KBQA to predict the number of inherent faults
would be based upon a unification of the number of faults predicted from the above means.
A knowledge based approach would be able to determine which factors should be weighted
heavier than the other. Through a minimal consultation session (possibility eliminated by
automatic code/scenario analysis), the prediction should be accurate and straight-forward.

The next factor to consider in the Musa Basic Execution Model is the fault reduction
factor B. Based upon current studies, Musa believes that the initial measurements of the fault
reduction factor show a strong tendency to be relatively stable across different projects. There
are no other references concerning this reduction factor other than data collection surveys of
the raw numbers them selves. It may be prudent to tie this number in with software process
analysis as discussed above. The dangers of using a stable fault reduction factor will be
over/under estimation based upon the individual process of the software developers.

Obviously, the capability of achieving a high fault reduction ratio is based upon the
"software repair and debugging process". Then again, the capability of reducing faults is
proportional to the quality of the software design. For this parameter, the SEI CMM levels
could predict the levels to be achieved.

The third factor that the KBQA must determine for this software reliability model is
the fault exposure ratio K. It may be possible to tie this factor in with the fault reduction
factor. The success of both of these factors appear to be a by-product of the quality/quantity
of the V&V/Testing process. Musa has stated that the fault exposure ratio K shows some
dependency on the structure of the program, and the degree to which faults are data
dependent. As with the fault reduction factor, the fault exposure ratio may average out for
large programs.

The linear execution frequency f, is easily determined by division of the average
instruction rate by the number of object instructions in the program. Knowledge of the values
of these parameters are important if we are to obtain reasorably accurate predictions of
software reliability. By looking at this one specific reliability model, it should be apparent
that reliability prediction should be heavily based upon the software development process.

Page 59

Other factors exist beyond the parameter prediction for the reliability models. Software
reuse will also have a strong influence. The issue here is complicated since just the raw
percentage of software reuse is insufficient. A better measure than raw percentage of reuse
may be subsystem, segment, or even component reuse percentages. Just predicting the
reliability effect of "high quality" reused software does, by itself, not take into account the
intra-module effects versus inter-module combinatorial factors of reused software
statements/parts versus complete components.

6.5 Static Analysis

Another method of predicting reliability prior to program execution (or unit execution)

is derived from Code Inspections or any form of static code analysis. The KBQA could be
able to log and classify defects found by code inspectors. Automation of this process could
allow a relationship to be formed based upon the kinds and number of defects, and how such
effects reliability.

6.6 Summary

Software reliability prediction as proposed by this project is more of an art than a

science. The biggest challenge to the KBQA will be in the prediction area (versus the
estimation and measurement areas). Several other issues can be "thrown" into this territory,
For example, the reliability of the function implemented can be statistically determined from

two angles. First, the analysis of similar functions by domain (i.e. mathematical versus logical
versus etc.) can offer a rough estimate of reliability. The knowledge base should be designed
such that it collects historical experience in the data base, along with a mechanism of

continual "fine tuning" of itself. Lastly, the knowledge base must be able to assign confidence
weights to each of the above mentioned constituents and arrive at an overall reliability
estimate. Anothcr thought is whether Fuzzy Logic mathematics can assist the knowledge base
to arrive at conclusive results given such indeterminate input data.

Page 60

CHAPTER SEVEN

Knowledge Base Architecture

Page 61

CHAPTER SEVEN - KNOWLEDGE BASE ARCHITECTURE

7.1 Introduction

The key to successfully integrating reliability engineering into the software
development process is to identify how we can determine reliability early on in the life cycle
(versus first specifying reliability, then measuring it). in this chapter, the architecture for a
knowledge based expert system to support the reliability-engineering process will be explored.
Even though this project concentrates on only the reliability aspect of software quality, the
architecture of the Knowledge Based software Quality Assistant (KBQA) will be such that it
is extensible to account for the other software quality factors at a later date. The methodology
used by the KBQA to improve reliability-engineering of software is:

1. Predicting Reliability Before Program Execution:
- From characteristics of the software product such as:

- Domain analysis.

- Hardware execution environment.
- Predetermined software characteristics (i.e. Ada versus Assembler).

- From the software development process.
- Software Engineering Institute's Capability Maturity Measurement.
- The training/level of expertise of the developers.

- Historical Factors.

- Developers performance on prior efforts in general.
- Developers performance on prior efforts in this domain.
- State of the art in this domain (developer independent).

2a. Estimating Before System Test:
- Design errors caught by design inspections.
- Coding errors caught by software inspections.
- Any other documentation errors.

2b. Estimating During Test:
- Statistical trend analysis techniques based upon partial measurement.

3. Measurement After Deployment:
- Actual reliability in the operational environment.

Page 62

- Feedback of "lessons learned" back into the software development process.

7.2 System Architecture

The driving force behind the proposed system architecture is two fold. First is system
availability. The computer systems that are readily available from both an economical and
practical perspective are the MS-DOS/Windows-based Personal Computer (PC) and the Apple
Macintosh. Capable system configurations are available for under $5000. Due to the
widespread use of both machines, purchases would probably not be necessary since the
systems are likely to be available at most locations already. The second goal is to provide as
much software portability as possible, while not hindering the technical sophistication of the
system. There are various advanced Commercial-of-The-Shelf (COTS) software packages that
are not only available for the PC and the Macintosh, but has also been ported to most other
computer systems as well. Any software that must be written to support the system will be
sparse, yet if written correctly will also yield results that are also portable.

In summary, the goals of the system architecture are low cost and portability. The
recommended system configuration, along with explanations for the KBQA are as follows:

HARDWARE:

Apple Macintosh (preferred).
- Minimum of 4 MB RAM.

- 40 MB Hard Drive minimum.

- Color capable.

or

IBM PC (386/486)
- Minimum of 4 MB RAM.
- 40 MB Hard Drive Minimum.

- Color capable.
- Mouse.

- MS-Windows.

Page 63

SOFTWARE:

Graphical User Interface: HyperCard
- For all MMI (other software will be transparent to the user).
- Best package available for ease of construction and simplicity of use.
- Available only on the Macintosh, but several "clones" are available for other
systems (minimal porting effort).

Expert System Shell: Nexpert Object
- Available on most architectures.
- Robust system (object oriented, forward/backward chaining, extensive
interface routines, etc).
- Support a wide variety of interfaces; Ada/C++, Hypercard, Oracle database,
etc.

Data Base Management System: Oracle

- Support of the requirements-specific traceability of reliability.
- Support of the requirements-specific monitoring of reliability.
- SQL-based for portability.
- Available for most systems.

Programming Language: Ada (C/C++ alternatively)
- Most of the software reliability models are already available in source code
format (i.e. Musa) at minimal cost.
- Very few of the models will have to be coded.
- Alternatively: It may be preferred to recode all the reliability models so that
the various models can be indexed/grouped by model type.

7.3 Knowledge Base Architecture

The knowledge base should be developed in a modular approach. Instead of having
a single knowledge base containing all the rules, it is recommended that the KBQA employ
various knowledge bases which will be specialized for specific purposes. Sectioning the
knowledge base into several focused knowledge bases allows for a more modular approach
to knowledge construction, along with simplified maintenance. Other advantages of a modular

Page 64

knowledge base construction are:

- Specialization of various types of knowledge representation:
- Functional-Based Reasoning.
- Case-Based Reasoning.
- Model-Based Reasoning.

- Multiperson construction of the knowledge bases:
- Experts can concentrate on developing knowledge only in their respective
areas of expertise.
- Allows several knowledge base developers to work concurrently.

- Increased performance during consultation sessions:
- Directed inferencing improves efficiency.
- Finer grain control over the reasoning process.

- Easier Testing/Validation & Verification of the individual knowledge bases.
- Support of a "software engineering" approach to knowledge base construction.

There are presently three modular archi,, Iures under consideration for the KBQA.
This project will make no attempt to recommend one approach over the other. It may be
possible to converge on a consensus for one approach over the other once further study has
been performed on the krowledge base development. The knowledge base insight required
to justify such a decision does not exist at the present. The three approaches are:

1. Distribution of the knowledge into the different phases of the life cycle.
- Pseudo-model based reasoning.

2. Distribution of the knowledge into the different "components" of reliability.
- Pseudo-case based reasoning. Reference chapter 3 section 4.

3. Distribution of the knowledge into allocated tasks.
- Pseudo-function based reasoning.

7,3A1 Architecture 1: Life Cycle

The approach treating the distribution of the knowledge into the different phases of the
life cycle has a foundation based upon the significant differences in handling reliability in each
phase. In the early phases of software reliability engineering, specifically the feasibility study,
the requirements analysis, the preliminary design, and the detailed design, the actual
measurement of reliability is impossible. However, prediction of reliability is certainly not
out of our reach and is capable of being performed. Conversely, in the Operational and

Page 65

Maintenance phase of reliability, prediction is impractical since total measurement is possible.
It is obvious that reliability is handled differently in each phase of the life cycle. The creation
of different knowledge bases to support the various life cycles can easily be done. The focus
of each knowledge base at each phase would be comparable to:

- Feasibility phase:

- Technological knowledge.

- Domain knowledge.

- Requirements phase:
- Domain knowledge.

- See IEEE Special Issue on Requirements.

- Design phase:
- Process knowledge.

- Architecture knowledge.

- Hardware knowledge.

- Software knowledge.

- Coding/Unit Testing phase:
- Knowledge on unit testing.
- Knowledge about determining Reliability as function of Prediction/Lstimation.

- Integration/Integration Testing:
- Knowledge on integration testing.

- Knowledge about determining Reliability as function of Prediction/Estimation.

- System Testing:
- Knowledge on system testing.
- Knowledge on operational emulation.
- Knowledge about determining Reliability as function of
Estimation/Measurement.

- Operational and Maintenance:
- Knowledge on operational testing.

- Knowledge about keeping reliability history/monitoring.
- Knowledge about un-reliability limits/warnings.

Page: 66

CD

'o

oo
I 0 • I .u 0

.- . I '0 0 1_o

.- L
fE 1 • '01 , •

- - - - - - - - -

0

0
E Eco CL

a) Z % I/)

I A
co

0)

CI.- 2_ _ _-& a___

0

11) c

cE5) I3Q 3 c~* 62

00

The architecture for this view is shown in figure 7-1. In this setup, as with the others,
Nexpert Object is the drivers seat for control. The knowledge of software reliability
engineering has been placed into seven different knowledge islands, each one
specialized for a different phase of the life cycle. For example, in the Operational and
Maintenance knowledge base, we would not expect to find rules supporting the prediction of
reliability of a model based upon size and complexity metrics. But it would be expected to
find rules which optimized the selection of software reliability models for deployed systems.
All user interaction is performed through the HyperCard Graphical User Interface (GUI). The
Oracle Data Base Management System (DBMS) is primarily used to hold such information
as:

- Requirements-specific traceability of reliability.
- Requirements-specific monitoring of reliability.
- Defect reports/Code modifications/etc.
- Project Management information.

The Software Reliability Models module containing all the models has an interface
allowing the rules to determine the most appropriate model to use.

7.3.2 Architecture 2: Components of Reliability

Another approach in handling the distribution of knowledge is by focusing on the
various "components" of reliability. In quantifying reliability, we can define it to be the
weighted sum of various percentages of Prediction, Estimation, and Measurement. This sum

must equal one. For example, during the Feasibility phase, the only measure of reliability
available is that of prediction. So reliability in that case could be specified as 100)%
Prediction. In a different phase, coding and unit test, reliability is based mostly on estimation
and prediction; say 25% prediction and 75% estimation (these numbers are not meant to define
reliability at this phase, it varies from case to case, consider this just to be representative of
an imaginary program). Lastly, we would also require a domain knowledge base since it may
be beneficial to separate this into a specialty also. The focus of each knowledge base at each
phase would be comparable to:

Page 68

- Domain:

- Application domain knowledge.

- Considers recommended reliability (specification).
- Considers the hardware/software domains.

- e.g. Ada versus FORTRAN.

- e.g. Space-based versus naval-based versus ground-based.
- e.g. SEI Capability Measure Model rankings of 0 to 5.
- etc.

- Physically the largest knowledge base.

- Prediction Component of Reliability:

- Considers what stage of the life cycle.
- Extensive reliance on the Domain knowledge base.

- Estimation Component of Reliability:

- Considers what stage of the life cycle.
- Weak reliance on the Domain knowledge base.

- Moderate use of the Reliability Models to estimate reliability.
- Most control-extensive of the three knowledge bases.

- Must interact with the other three knowledge bases.
- Must balance the percentage of weighing between prediction and

measurement.

- Measurement Component of Reliability:

- Considers what stage of the life cycle.
- No reliance on the Domain knowledge base.
- Extensive use of the Reliability Models for measurement.

- Optional: Orchestrating

- The control logic to allocate the balance between prediction. estimation. and
measurement may become quite complex. This responsibility may be better
suited in a knowledge base of its own and removed from the Estimation
Component knowledge base.

This setup is shown in figure 7-2. Notice that the architecture is the same as the
previous one except for the different specialization of the knowledge bases.

Pagc 69

i .m mm IIIm

C,)2
LL

oc

00

_0 0
(1) 00c 0

Z wwl
CA..

%-. a - W -0-

y 0

00

U--

7.3.3 Architecture 3: Development Tasks

Another approach is to manage the distribution of knowledge into allocated tasks or
aspects of determining reliability. Besides the application Domain knowledge base, there
would be a knowledge base for the Test Type, and another for Life Cycle considerations. The
focus of each knowledge base at each phase would be comparable to:

- Domain:
- Application domain knowledge.
- Considers recommended reliability (specification).
- Considers the hardware/software domains.

- e.g. Ada versus FORTRAN.
- e.g. Space-based versus naval-based versus ground-based.
- e.g. SEI Capability Measure Model rankings of 0 to 5.
- etc.

- Physically the largest knowledge base.

- Test Type:
- Determining the best test based upon such circumstances as:

- Resources available.
- Unit versus module versus integration.

- Recommendations and explanations of specific test types.
- Automatic generation of test plan.

- Life Cycle:
- Determining the allocations given to:

- Prediction.
- Estimation.
- Measurement.

- Software Engineering process considerations.
- Also would act as the "driver" knowledge base.

This setup is shown in figure 7-3. Again, the architecture is the same with the
exception of the knowledge bases.

Page 7 1

C,))

7FDE

0

Sz* o

O.9

C- o I) ý-

"" i-- --

"00.

Do

0 E ~ 0CS t!2

a)

-oo

00
0.V

L)

Pae7

7.4 Advantages and Disadvantages

As mentioned earlier, a decision of one architecture over another will not be given in
this project, much deeper analysis is required to do so. However, some high level arguments
for and against each architecture can be performed.

Architecture I with knowledge partitioned by the different phases of the life cycle
allows for modelling the knowledge based around the tasks involved in each phase of the life
cycle. Advantages are primarily due to the close matching to DOD-STD-2167A and other
project management scheduling issues. Disadvantages are the large amount of duplication of
effort of the reliability components in each phase of the life cycle. It is yet to be determined
if the duplication of effort is worth the ease of construction and close matching to project
management.

Architecture 2 with knowledge partitioned by the different components of reliability
is conceptually simple. Advantages include the minimization of the duplication of the
components by life cycle. This is conceivably the most concise method of knowledge
construction. However, the difficulty may be in the complexity and abstract nature of the
knowledge base partitions.

Architecture 3 with the knowledge partitioned by the allocated tasks may match the
activities of present software development better than the first two. Many organizations have
software development procedures in place with activities scheduled in sequences.
Disadvantages are primarily around the handling of software development as a series of
predefined sequences. In addition, newer software process modelling techniques will probably
not match the older ways of doing software development.

7.5 Knowledge Representation

The representation of' knowledge is the fundamental binding between knowledge and
the data collection which supports the reliability engineering process in the KBQA. This
project assumes that a sophisticated knowledge representation scheme similar to the one in
Nexpert Object is used to develop the knowledge bases. In figure 7-4 are the principal
graphical representations use to support the construction of the knowledge bases.

Page 73

A Class (i.e. a type) is represented by a circle, an Object (instance of a class) is
represented by triangle, a Slot (a value) is represented square, and a Property (type for the
slot's value) is represented by a rectangle. For further information on knowledge
representation, see the Nexpert Object Functional Description documentation. This is an
excellent tutorial on knowledge representation that will hold true for several of the more
advanced expert system shells.

One of the first knowledge representation schemes that must be developed is for the
various test types. Tests are generally divided between the structural class and the functional
class. F -wever, some testing text authors have defined a hybrid class which is a combination
of the ftaictional and structural classes. In this project, the nomenclature for testing will be
derived from the text Software Testing Techniques, 2nd Edition, by Boris Beizer. For a
detailed descripl.Iu, (i.e. tutorial) of software testing, this book should be reviewed.

In figure 7-5, a test type hierarchy has been defined. All tests are defined to be sub-
classes of the type "Test Type", and would inherit all the properties of that type. The
structural testing class is further broken down into various structural tests. The dotted
lines/figures represent more additional items. A complete description of the most common
structural tests is provided in Beizer in section 3.3.7 along with the relative strength of each
kind of test. The following knowledge would be expected to be instilled into the knowledge
representation scheme:

- Various kinds of each structural test.
- The relative strength of each structural test.
- The amount of time required for each structural test.

When to choose one test over another.

Page 74

0 0

CD,

CC/)
F- a)c

c/)
10

zwL
U)

04-

ci) 4)-4,

F-
0c Li0

u0j

Pae7

Irr

Ir

C,)

LO
P-I

"Page 16

A similar knowledge representation in the KBQA should exist for the functional and
hybrid classes of tests. Notice that the hybrid class development may be simplified by
inheriting properties from the functional and structural classes. The KBQA should be able to
determine what test types should be employed based upon such factors as:

- The desired reliability.
- The amount of resources (i.e. personnel, money, time) available.
- The module's function (i.e. logical versus mathematical) type.
- The stage of the life cycle.

Another hierarchy that must be developed will be used to support the various reliability
models. This hierarchy is shown in figure 7-6. As discussed in chapter 4, the various
reliability models can be sub-grouped in four class: Time Between Failures (TBM) models,
Failure Count (FC) models, Fault Seeding (FS) models, and Input Domain Based (DB)
models. This particular diagram has been expanded to show the Musa Execution classes. The
P1 and P2 slots are used to hold the parameters that are required for the application of each
model.

The KBQA must make decisions of the applicability of each model based upon
circumstances such as function type, stage of the life cycle, estimation or measurement as the
goal, etc. Some of the capabilities that KBQA must support are:

- Given a required result (i.e. testing time to failures), pick the model(s) which best
support the answer.
- Given a list of input parameters that are available, pick the model(s) which can be
used.
- Given a combination of the above two (i.e. answers desired and parameters
available), provide a suitable reliability measurement collection (one or more models).
- Provide a prioritized list of the confidence of the application of each model given
any combination of the above three.

Page 77

Ico CD

rE
w

-j

0

LL C\s J

1.1.1c in

"*I I Ia

CCE

Page 78

CODE/SYSTEM TYPE HIERARCHY

~Syste~

S s I

F

Segment

ip,;"

* S

- S

Fig 7-7

Page 79

S• • m l II II I | || |II

Another important hierarchy for knowledge representation is the division of code
within a system. Figure 7-7 show a representation that is consistent with our earlier definition
in chapter 3. It is the DOD-STD-2167A definition for a system, except for the proposed
elimination of the CSCI division. The primary purpose of this architecture is to provide
knowledge base information on the code's history, life cycle phase, bug reports, tracking
information, traceability information, monitoring information, flow-graph, documentation,
specifications, author(s), etc.

A key feature of all these hierarchy are their extensibility. Should it be desired to add
additional or new test types, reliability models, etc., to the hierarch, the maintenance of the
knowledge base is relatively straight-forward.

Page 80

CHAPTER EIGHT

Automatic Test Plan Generation

P S'.c ,I

CHAPTER 8 - AUTOMATIC TEST PLAN GENERATION

"Program testing can be used to show the presence of hugs,

but never their absence!". Dijkstra

8.1 Introduction

Earlier, it was contested that the key to quality is to address the issue earlier in the life
cycle. Even with increased attention to "building" in the quality, post coding testing is still
necessary. The automatic generation of a test plan must address two issues. First, what tests
are necessary to perform the testing. Second, how much testing must be performed. In the
Knowledge Based software Quality Assistant (KBQA), we have the capability to extend test
planning beyond simply what and how much. We can also employ the software reliability
models to give us estimates as to how much more testing is required to meet objectives, etc.

Thus the automatic test plan generation primarily entails two types/phases. One is the
use of the unit testing techniques, and the other involves the use of the various software
reliability models. System testing plans can be drawn up very early in the life cycle. Many
contracts require test plans to be drawn up early in the feasibility phase. This chapter will
addresses the automatic generation of the test plan in the two phases separately. The software
reliability models will be covered first since their use has been proposed throughout the life
cycle. The forecasting and use of unit testing occurs primarily up until the end of the
Unit/Unit Testing phase, thus it will be covered last,

8.2 Reliability Models

The various software reliability models provide answers to many possible questions.
The questions may deal with the present level of reliability, how much more testing to meet
original goals, etc. The effort to perform these calculations can become tedious, especially
when attempting a "what-if" type of consultation. Also. it is not always possible to determine
what information (i.e. initial data requirements) is available, along with the confide1 ,ce level

Page 82

of the data.

One of the many goals of a robust KBQA is to automate this process. Automated test
planning currently is immature, and worse, does not support requirements-specific
considerations. The best possible explanation for this is due to the fact that reliability
engineering has not been addressed as a life cycle process, and has relied only on initial
specification and final measurement. Since the KBQA is a life cycle process, it should be
possible to develop automatic requirements-specific test plan generation.

The most frequently used and best understood of the software reliability models is the
Musa Execution model. There are two primary forms of the models:

1. Basic Execution Model - linear shape.
2. Logarithmic Poisson Execution Model - nonlinear shape.

Both models are nonhomogeneous, in that the characteristics of the probability
distribut;ons that make up the random process vary with time (variation of failure intensity
with time). The models differ slightly in the shape of the curves, and the fact that a Mean
Time To Failure (MTTF) exists for the LP model, but not the Basic model. There are two
parameters for these models, the execution time and the calendar time. The correct sequence
is to choose the execution time, then use the result for the calendar time.

The discussion of automatic test plan generation in this chapter will be based only the
Basic Execution Model for the execution parameter. A pictorial description of the model is
shown in figure 8-1. The information in the Failure Data box must be either predicted or
estimated by use of the KBQA. The choice of or combination of prediction and estimation
is primarily determined by the stage of the life cycle. The database like icon (the barrow) is
information that is normally specified, however, the KBQA should have the capability to
"recommend" values based upon the current circumstances and intelligent decisions from the
knowledge base. Also, automated "what-if' sessions cou'd be conducted with a
specified/Knowledge Base-derived range. The methodology proposed is extensible to the
other models.

Page 83

4 Dl

o Ao0 . (D• i Q

Oo

Lt..",,.

,X '- E cuj,,1 "-o

0 o

E >1

*L LJ

---------- ----- --,
Iz c

I I I

8.3 Musa Example

The Musa Basic Execution Model for the execution component model can provide

several quantities related to a program's execution time. The formulas require that two
parameters be known:

- Lambda,: Failure Intensity at the start of operation.
- v0: Total number of failures that will ever be experienced during infinitely long

operation.

The determination of the values of these components may be performed by two means:

1. Prediction: The parameters are prediction from characteristics of the software
itself, the development process, etc.

2. Estimation - The parameters are estimated during phases of the life cycle where
part or all of the software is executed. Upon generation of failure data, the parameters
can be estimated statistically.

Prediction of the parameters can be accomplished before any execution of the software

is performed. Specifically, Musa defines the Total Estimated Failures to be equal to the

Number of Inherent Faults divided by the Fault Reduction Factor. However, the most straight-

forward metric for the number of faults is based upon a combination of the software size and

complexity, tuned by prior experience with similar projects and the software development

process in place.

There are commercially available software applications which perform analysis of the

code, and automatically generate metrics based upon size, complexity, and other data. Thc

KBQA should not attempt to duplicate this functionality already procurable. What the KBQA

should attempt to do in the prediction of the number of faults is develop a capability to assist

in prediction the reliability based upon such factors as:

- Prior experience with similar projects.
- Change: Specifications, Personnel, development Environment, etc.
- Maturity: Software Development Process, Personnel skill and eduction.

Page 85

- Thoroughness of documentation throughout the life cycle.

It would be desirable for the KBQA to have the knowledge to merge together metrics
of the code itself, with the knowledge of the aforementioned factors. In addition, the KBQA
should have a feedback loop to continually adjust it's knowledge o' these factors to improve
it's prediction accuracy.

Once the software is executed and failure data is available, the parameters can be
estimated statistically from the data. This estimation process can occur at several levels:
Code/Unit Testing, Integration/Integration Testing, System Testing, and Operational and
Maintenance phases. Of course, the accuracy of the estimation improves in the later stages
of the life cycle. The KBQA should have the knowledge to make the transition from pure
prediction, to partial prediction and partial estimation, to total estimation. In this way, these
estimations are incrementally used to refine the values established by prediction. As the
sample size increases, more emphasis should be placed upon estimation. This blend from
prediction to estimation can be based upon the weighted average of previous parameter
predictions along with parameter estimations (with the weights being a function of sample
size). It may be best if the weights for the estimates be kept at zero until the estimates have
an accuracy within an order of magnitude of that of the predictions. The weights for the
predictions would be set to zero when the estimates become superior in accuracy by an order
of magnitude. Of course, the cut-off point does not have to be a factor of ten, but may be
picked on the fly by the KBQA.

Musa also defines the Initial Failure Intensity to be a product of the Total Program
Execution Rate, Total Number of Faults in the Program, and the Fault Exposure Ratio. The
same processes above can be used by the KBQA to assist in the prediction and estimation of
this parameter. In ,7e'neral, there is sufficient means available to allow the KBQA to arrive
at intelligent decisions for the process of parameter prediction and estimation. Of course, once
in the Operations and maintenance phase, the parameters can be measured and kept within the
KBQA database.

Page 86

8.4 Unit Testing

In the discussion of high quality software, the discussion of unit testing seems more
of a contradiction. The very fact that the software is being tested implies that errors are
expected. However, testing does have to be performed. Hopefully, the fault density will be
less using the KBQA than without it.

Meyers defines seven basic types of software tests. The tests, by no coincidence, are
related to the life cycle. The tests are:

- Unit Testing.
- Integration Testing.
- External Function Testing.
- Regression Testing.
- System Testing.
- Acceptance Testing.
- Installation Testing.

The KBQA must address all of these test types in one form or another. Th~s project
will focus on the discussion of Unit Testing and Integration Testing as a means to increase
reliability.

The two primary types of such tests are functional and structural, and a third has been
defined by combination of the two and is called hybrid tests. In figure 8-2, is a diagram of
the proposed object hierarchy for the "Test Type" class. At one end of the hierarchy are the
various types of tests, while at the other end are the parameters involved with each kind.
Notice that this arrangement parallels the earlier discussion with the software reliability models
hierarchy. The forward or backward inferencing depend upon two factors:

- What information is available (along with the confidence level).
- What information is desired.

The system would thus inference forward if given certain input data to yield a
recommend test type. Conversely, it would inference backward if the environment forced a
specific test type. Of course, give uncertain data on both ends, the system would

Page 87

co 2LC

LUL

Cl)

ccC\
IxI

C~~~ca ~ ~ - ----- 1----

__

Pag 8

inference both ways searching for an optimized solution yielding the highest confidence level.

There are several difficult issues that the knowledge base must be capable of

addressing. For structural tests (white box), a major goal is to test smartly and not

exhaustively. The chances of achieving complete coverage in most modules is impossible,
if not impractical. The knowledge base must be able to determine what paths and with which

input values are required. The domain for this is probably based upon the kind of function

being implemented (i.e. mathematical function versus logical decisions). It is normally
impossible to test every possible value for math functions (i.e. a square root function), but

definitely possible to test a logical IF-THEN-ELSE or CASE statement (provided the level of

nesting is -hallow).

For functional tests (black box), the first issue is input domain partitioning. Automatic

generation of this is doubtful, unless the code was generated by extremely exact requirements
(i.e. formal methods). Human assisted input domain partitioning may be necessary, but,

assisted boundaries of the domain, may bc possible. A knowledge base understanding
different partitions (i.e. the square root function again) may be possible to develop.

Without a more formal method of software development, it may not be cost effective

to attempt to automatically generate test plans. The effort may better be spent on test analysis
and reporting. Hopefully, this "lessons learned" information can be fed back into the software

development process to find out just what is going wrong.

Page 89

CHAPTER NINE

Monitoring & Traceability

Page 90

CHAPTER NINE - MONITORING & TRACEABILITY

9.1 Introduction

An integral part of software reliability engineering is the requirements-specific
monitoring of the progress in meeting the defined goals. System reliability goals are normally
established in the earlier phases of the software development life cycle. Milestones are then
defined throughout the development for the evaluation of progress of meeting those goals.

Another integral part of software reliability engineering is the development of
requirements-specific traceability criteria. To properly adhere to DOD-STD-2167A, all
documentation and code must have the capability to be traced back to the initial requirements.
This is to ensure that all the features required of the system, as defined by the requirements
specification are implemented, and that no additional features ("It's not a bug, it's a feature")
are put in.

9.2 Software Quality Schematic

The Knowledge Based software Quality Assistant (KBQA) must be designed to

facilitate requirements-specific *nonitoring and traceability. In itself, the KBQA is not the
desired mechanism to support such activity. The KBQA is primarily intended to enhance
software quality engineering by tracking the progress by prediction, estimation, and
measurement. The process of monitoring and traceability is better handled by techniques
specialized for software development process modelling.

The comprehensive schematic which, as envisioned, that would be desirable to be

employed for software development is shown in figure 9-1. It is anticipated that these "tools"
will be utilized for optimizing the development of software. The first tool is a high
performance project management tool. A software specific one is not necessary since existing
examples do not appear to be promising. A good, general purpose project management tool
will integrate smoothly with the existing traditional Management Information System of the
parent organization. The primary goals of the project management tool in this schematic is
the typical attention to the cost, schedule, and

Page 91

0Z LI-
OacJ

woc
LI

C/) o05

< '>-

ucxz0 <
0)~-JJ

0)W

Lo a O t

zD 0(Li
LLU
0Q 0

LU a

Z H 7

w wý LZ0<c

cLr

Pagc- 9 2

performance triangle. Use of a commercial off the shelf project management tool would save
considerable duplication of effort in developing a similar functionality within the KBQA.

The second tool envisioned for this software development architecture is a software
process management system. Such systems are presently undergoing vigorous reseirch at
organizations like IBM, SAIC, and Lockheed. A prototype system will soon be available in
the DOD sponsored STARS repository. These systems take into account the Software
Engineering Institute Capability Maturity Measurement (SEI/CMM) methodology. The
purpose of these systems are to furnish a software-specific management potential to project
management. Here too, it is not recommended to duplicate effort in providing the KBQA with
similar functionality.

In summary, both Project Management and Software Process Management systems
provide the capability to supply the requirements-specific monitoring and traceability of
software quality. It is not recommended that this duplication of effort be performed in the
KBQA.

9.3 Monitoring & Traceability Issues

The monitoring and traceability of progress throughout the software development life
cycle is normally considered to be an exercise in change control. Humphrey IHUMP90]
identifies several items which must be maintained (i.e. changed and updated):

- Operational Concept documents.
- Requirements Document.
- Specifications Documents.

Design Documents.
Source Code.
Object Code.
Test Plans.
Test Cases, Test Configurations, and Test Results.
Maintenance and Development Tools.
User Manuals.
Maintenance Manuals.
Interface Control Documents.

Page 93

I i

This project will not delve into the process of handling such change control. This

capability already exists in the software process management schemes. It is believed that
creating this capability for the KBQA will be a duplication of effort.

Should some capability of monitoring be desired in the KBQA, it should be possible
to develop a rudimentary knowledge base to support such. The approach to the monitoring
issues can be based on two strategies:

1. Monitoring with respect to quantitative targets.

Setting quantitative targets.
- Measuring actual values.

2. Identifying components with unusual metric values.
- Comparing actual values with targets.
- Responding to significant deviations.

Such -idimentary capability of the monitoring and tracking of requirements can also
be enhanced by an automated data analysis system, combined with statistical trend analysis
and exception analysis. A knowledge base could also be developed to support report
generation and presentation, along with automated conclusion and recommendations.

Activities missing from this approach area risk assessment, cost modelling, test and the
general integration of cost, quality, and risk factors. This capability is better served by the

aforementioned software process management systems.

Page 94

CHAPTER TEN

Conclusion and Recommendations

Page 95

CHAPTER 10 - CONCLUSION AND RECOMMENDATIONS

The reliability of software systems will continue to grow in importance. Today's
common acceptance of the "shrink-wrapped" warranty for software will eventually be replaced
by regulations and lawyers. As computers continue to be integrated with more and more
aspects of life, the consequences of failure will continue to expand. The most efficient and
practical means of increasing the reliability of software systems is to place more emphasis on

the process, and less on final measurement.

10.1 Conclusions

The concept of a Knowledge Based software Quality Assistant (KBQA) to facilitate

the development of quality software is a novel approach. The limited time available (six
weeks) constrained the scope of this project to the reliability factor of software quality. The

proposed architecture, however, will allow the other software quality factors to incrementally

be added in future research. The proposed conceptual architecture of the KBQA is shown in
figure 10-1.

Most existing software quality philosophies are based upon filit specifying quality,

then evaluating it after the fact. This project has proposed that the solution to creating
software of higher quality is founded on the software development process. Attention must
be paid to software quality throughout the development, and even extending into the
Operational and Maintenance phases in an effort to utilize "lessons learned". Software quality
must be appraised by a Predict-Estimate-Measure cycle, in which a smooth transition blends

from one technique to the next.

The KBQA, as developed in this project will support software reliability engineering.
A key goal of the KBQA and it's modular architecture is to make it extensible. The extension

of the KBQA as envisioned would support the entire software quality spectrum. Use of the
KBQA with an automated Software Process Management System (such as the SEI/CMM or
the Krasner/SAIC) and a Project Management System (such as Microsoft Project) would
provide a requirements-specific monitoring and requirements-specific traceability capability.

Page 96

Z

LwJ
U) < 0

uj

z W
0 7

&aJ LL 0

QL52,
i n m -Do

0W~
WZ 42

LQJ O)- 0

F-U--

ow
:ýGd)

COo 3 j6J

ITPag 97"

10.2 Recommendations: KBQA Development Sequence

The KBQA can be developed in a number of different stages. The modular knowledge
base architecture would allow the creation of knowledge islands by individual experts in each
area. This approach also allows a parallel development of knowledge islands. The following
is a recommended succession of events in creating the KBQA:

1. Settling on a hardware and software suite to host the KBQA. Several system
combinations are possible, but a key to the KBQA distribution and wide spread use
is to host the system on equipment that is readily available. The preferred system is
the MacIntosh II Color computer system due to the power, flexibility, and the highly
respected ease of use of that computer. The software choices are commercial off the
shelf packages; Nexpert Object for knowledge base development, Oracle for the
database, Microsoft Project for the project management system, HyperCard for the
Man Machine Interface, and Ada as the language of choice for any code that must be
written. A difficult choice is between which Software Process Management System
to employ (SEI versus SAIC).

2. Next, is to decide on a particular knowledge base architecture from the three
provided (or a modification or combination of the three). The knowledge bases can

be developed concurrently by different developers.

3. The next task is the detailed &sign of various object hierarchies. One is the

categorization of the various software reliability models. The knowledge base must
partition the models based upon required parameters, provided information, etc.
Another hierarchy is the various testing methodologies (structural, functional, and
hybrid). It is anticipated that many kinds of such hierarchies must be developed to
allow efficient run time operation of expert system.

4. An intermediate task is to develop a smooth integration of the work developed in

tasks two and three. This is more of a knowledge base refinement and iteration task.
Specil1dAIC m'il:t he taken to ensure that "hooks" are in place for the other software
quality factors.

Page 98

5. The final task would be to connect the project management system and a software
process management system with the KBQA. The KBQA should be linked with the
project management and SPMS systems to support the requirements-specific
monitoring and traceability of software reliability.

After the system has been developed to a point where everything is integrated and
functioning smoothly, expansion beyond just reliability should be attempted. The next most
important software quality factor, just behind reliability, could arguably be maintainability.
It is generally excepted that reliability and maintainability are about the only (or at lest most)
quantifiable of the thirteen software quality factors. Finally, the remainder of the software
quality factors should be introduccd within the KBQA, preferably one at a time.

Page 99

APPENDIX

References

Page 100

REFERENCES

[MUSA87] Musa, John D.; lannino, I.; Okumoto, K. Software Reliability: Measurement,
Prediction, Application. McGraw-Hill Series in Software Engineering and
Technology. 1987.

[HUMP90] Humphrey, Watts S. Managing the Software Process. Addison-Wesley
Publishing. 1990.

IIEEE911 International Symposium on Software Reliability Engineering. IEEE Computer
Society Press. 1991.

[LASK89] Lasky, Jeffery A.; Kaminsky, Alan R.; Boaz, Wade. Software Quality
Measurement Methodology Enhancements Study Results. RADC-TR-89-317.
1989.

NOTICE: Numerous Rome Laboratory Technical Reports that were published over the
past decade and a half were studied extensively in an effort to further my
understanding of software reliability. No specific references can be provide,
yet the material proved invaluable in getting a "feel" and understanding of the
state of the art in software reliability engineering. The most helpful of the
Technical Reports was RADC-TR-87-181, Volume I and I1.

"*U-S. GOVERNMENT PRINTING OFFICE: 193- 710-09 1-60226

Page 101

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3 1) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3 r systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/rnaintainabil ity and testability.

